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ABSTRACT

Studies are reported relating to the enhancement of understanding of
the roles played by both binders and reinforcements in the attainment
of advanced properties with fibrous composites. Previous analyses of
properties and of efficiency of application are reviewed and extended.
New analyses are developed for viscoelastic behavior and for three-
dimensional reinforcement. Results of mechanical and photoelastic
evaluations of transverse effectivenesses of filamentary reinforcement

are presented.

ii



FOREWORD

This document is the annual report on the program entitled '"Study of
the Relationship of Properties of Composite Materials to Properties of
Their Constituents'' for the period from September 27, 1964 to September
26, 1965, The program was performed for the National Aeronautics and
Space Administration under Contract NASw-1144, and was monitored by

Mr. Norman Mayer of that agency.

In this report the section "STATUS OF MICROMECHANICS STUDIES"
was prepared by Mr. Rosen. The sections "THREE DIMENSIONAL RE-
INFORCEMENT and "EXPERIMENTAL EVALUATIONS OF TRANSVERSE
EFFECTIVENESS'" were prepared by Mr. Dow, and the section ""'STRUC-
TURAL EFFICIENCY'" was the result of joint efforts of these two authors.
Professor Zvi Hashin of the University of Pennsylvania prepared the sec-

tion entitled "VISCOELASTIC FIBER=-REINFORCED MATERIALS",

The authors wish to acknowledge the contributions of the following:
A. Redner of Photolastic, Inc. who did the photoelastic studies; R. L.
O'Brien who performed the experiments on transverse effectiveness, and

O. Winter for computer programming.
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INTRODUCTION

Evaluations of composite materials past and present continue to em-
phasize the impediment provided to the attainment of dramatic advances
in material properties by the relatively weak and flexible plastic binder
materials of current technology. The researches described in this report
are accordingly directed toward the delineation and evaluation of the role
of the binder material as well as the filaments in the determination of the
mechanical properties - both as regards strength and stiffness -, and then
toward the definition and investigation of various ways of alleviating binder

deficiencies.

The present report covers both the areas outlined in the first paragraph.

The first part of the report is concerned with extending and carrying to a
logical conclusion the efficiency evaluations begun in Reference 1. Then,
in the area of delineation and evaluation of the role played by the binder
material, a review is made of the state of the art of micromechanics as
applied to composites, particularly in the light of the researches already
accomplished in associated programs (References 1 and 2) to the present
study, in order to tie together the various accomplishments and extend
them as required to solidify the base for further advances. As a result of
this review, progress in the understanding of the mechanics of tension

and compression failure, as well as the determination of elastic properties,

is reported in the section "STATUS OF MICROMECHANICS STUDIES".
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The second part of the report is concerned with advancing the know-
ledge of the binder-reinforcement mechanics. Researches on visco-
elastic behavior are reported in the section "VISCOELASTIC FIBER-RE-
INFORCED MATERIALS', and experiments on the transverse properties
of filament-binder combinations are described in the section "EXPERI-
MENTAL EVALUATIONS OF TRANSVERSE EFFECTIVENESSES OF
FILAMENTS OF VARIOUS CROSS-SECTIONS!', Finally a method of
analysis in the section "THREE-DIMENSIONAL REINFORCEMENT" is
developed for three-dimensionally reip.forced composites to permit the
evaluation of the elimination of all planes of weakness through proper

filament orientation.



STRUCTURAL EFFICIENCY

In the previous contract studies, (Reference 1) the structural efficiency
of various materials for shell structures subjected to the axial compression
loads representative of launch vehicles was treated. In this approach a non-
dimensional measure of the structural weight is plotted as a function of a non-
dimensional measure of the design load (the structural index) in such fashion
that the structure having the least value of the ordinate at any value of the
abscissa is the one of ' minimum weight for that design load. Numerical
treatment of fibrous composites indicated that fiber winding patterns which
resulted in a material that was isotropic in the plane of the shell produced
the most efficient composite structures. The present contract studies have
resulted in the simplification of the structural efficiency relations to a form
which clarifies the reason for the previous result. Also the studies have been
extended to provide a definitive evaluation of the influence of individual consti-

tuent properties upon the composite structural efficiency.

Methods of Efficiency Analysis
A composite laminate can now be characterized by two material properties,
when considered for application to a cylindrical shell in axial compression. These
parameters are the effective modulus, E, and the shear stiffness ratio, X ,

given by :
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Where L & T denote longitudinal (axial) and transverse (circumferential)
directions, the results of the analysis of Ref. 3 have been applied (Ref. 4)
to laminates which are effectively homogeneous through the thickness. When
transverse shear deformations are neglected, the resulting instability equa-

tion is of the form:

(2)

where
1/2
is the smaller of ¥ and unity

e

t is the shell thickness (or effective thickness
R for a sandwich shell) to radius ratio
K empirical factor to account for initial imperfections,

etc, (herein, K is assumed unity throughout}

The buckle pattern is either of the symmetric-or bellows type-or the
asymmetric-or checkerboard type-as x is greater or less than one, re-
spectively. Thus, shells having a low shear stiffness ratio will buckle in
a checkerboard pattern. As the shear stiffness is increased, while the
effective modulus, E, is held constant, the shell will reach the point where
the lowest buckling stress is associated with the symmetric mode. Beyond
this, any further increases in the shear stiffness ratio will have no eff'ect

on the buckling stress.

In terms of the structural efficiency, the elastic behavior can now be

represented by the following simple expression:
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where
w shell weight per unit surface area
R shell radius
PS shell material density
Nx shell load per unit circumferential length
In the above equations it is seen that for an isotropic material:
§ = ¥ = 1
and:

E

An isotropic material can be obtained with a fibrous composite by selecting

E =

th of the fibers are oriented in each

a fiber orientation pattern in which one n
of n equally spaced directions (with n 2 3) and with many layers so that the
material is effectively homogeneous through the thickness, Such a material
has been shown to be the most efficient for the launch vehicle application
{(Ref. 1). Typical results which illustrate both the benefits of an isotropic
pattern and also the influence of shear stiffness are shown in Fig. 1. Here

the elastic efficiency is characterized by the slope, F, of the curve relating

weight to the square root of the loading index, i.e.:

F o= —— (4)



E-glass reinforced epoxy composites containing seventy percent fibers, by
volume, are considered for various fiber orientations. The upper curve is
a longitudinal/circumferential (or 6°/90°) laminate of varying fractions of
the material in each direction. The next curve is for a symmetric helical
pattern (£ £ ) of varying helix angle. The straight line is the isotropic
pattern and the weight reduction associated with this pattern is evident.

It is of interest 1o nofe also that the efficiency of a $45° laminate
and a half and half 0¢-90© laminate are identical. These structures are of
the same material but one has the material principal axes rotated 450 with
respect to the other. This rotation does not have any effect on the buckling
sirength of the composite shell, However, the shear stiffness ratios differ
substantially and the buckle modes are different. The helical pattern shell
buckles symmmetrically at this point and the 0°9-90° shell buckles asymmetrically,
When a shell is made with a material containing equal parts of these two biaxial
laminates the result is a material which has 25% of its material every 45°.
This is an isotropic pattern and has the high strength (or low weight) shown
by the lowest line of Fig. 1. The halves of the two biaxial materials when
put together buckle at higher loads than shells of each alone because of the

conflict in buckle patterns.

Equations (2) and {(3) apply to simple monocoque shells. As has been
shown, for the majority of cases of interest for launch vehicles, stiffened

shells are more efficient than monocoque construction. Accordingly, to

investigate the potential of fibrous composites for stiffened shells, an



idealized stiffening was hypothesized; the shells were assumed made in
the form of a sandwich with an ideal core material having adequate stiff-
ness properties through the thickness to stabilize the faces, but having no

ability to carry axial load. The elastic buckling efficiency for sandwich

'll/Z
o (5)

shells with such a core is given by Reference 4.
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For stresses above the elastic range (as in Reference 4)

t

C
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where

is the compressive "yield" or failure stress for

d‘y R
the face materials

As brought out in Reference 1, the determination of a really adequate



value of¢ for fibrous composites is a problem for further research,

y
and conclusions drawn regarding the potential of these materials for
those (limited) applications for which Equation 7 is used must be some-

what qualified. For launch vehicles, however, elastic buckling is the

dominant criterion,

Equations 1 through 7 were used in References 1 and 5 to evaluate the
cfficiency of composite shells having a wide range of constituent properties
and geometries. The present extension of these studies concentrates upon
the presentations of the influence of individual constituent properties upon

the composite structural efficiency.

The elastic constants of Equation 1 were evaluated by the methods of
Reference 6. The range of loading intensities used in Equations 3 and 5

were based on the boosters described in Table 1.

Materials and Configurations Considered
N

The materials and configurations considered for the launch-vehicle
shell application fell into several classes, as follows:
(a) Metals - First a family of metal shells was analyzed to provide
a basis for comparison with the composite shells. This metal family com-
prised a steel, titanium, aluminum, magnesium, and beryllium alloy with
the advanced properties postulated in Table 2. These properties were de-

liberately chosen to be high relative to present technological values to insure



a high standard for the comparisons with composites.

(b) Filaments - A family of eight filamentary materials was
sclected for use in the composites. These materials began with the
presently used E-glass in both solid and hollow fibers and ranged upward
in characteristics, including:

High-Modulus Glass
Asbestos

Steel

Beryllium

Boron

-and Alumina

The properties used for these various filamentary materials are given in

Table 3.

(c) Binders - A family of eight binder materials was also selected
into which the various filaments were incorporated. The binders began with
the presently used epoxy resin and ranged upward in properties, as follows:

Magnesium

Three hypothetical '"Light Alloys"
Titanium

Steel

Boron

The properties used for these various binder materials are also listed in

Table 4.

(d) Configurations - All shell composites were considered to be lami-

nates with each lamina unidirectionally reinforced by the filamentary material.
The directions of reinforcement of the laminae were varied in symmetric
fashion such that the principal stiffnesses of the laminate always coincided

with the axial and circumferential shell directions. The number of laminae

9



was supposed great enough so that the laminate acted like a homogeneous
medium, -i.e., no attempt was made to dispose internal and external
laminae in different fashions. Thus typical configurations included:

(1) longitudinal reinforcement; (2) transverse reinforcement; {3) longi-
tudinal and transverse reinforcement; (4) reinforcement at equal angles
(+ 9) tothe longitudinal or transverse directions; and (5) three way (+_300,

90°) reinforcement to provide in-planc isotropy.
P P Py

In order to help isolate the importance of various factors on the cnd
efficiency of composites, the filamentary and binder materials were
selected to provide several interrelated systematic types of variations.
These interrelationships are indicated on Figure 2. The matrix material
properties plotted in Figure 2 show that:

(1) The magnesium, titanium, and steel materials provide a vari-
ation in modulus at constant modulus-to-density ratio.

(2) The magnesium, ''light alloy II'", "'light alloy III"", and boron
materials provide a variation in modulus at constant density.

(3) The '"light alloy I'", "'light alloy II'', and titanium provide
a variation in density at constant modulus, as do the ''light alloy III",

and steel at a different constant modulus.

The fiber materials were selected to cover the range of actual prospects
from those now in actual use like E-glass to those which are more in the
nature of laboratory curiousities like alumina. (The fiber properties are

presented in Figure 2b.) Thus approximately the entire spectrum of

10



properties of current interest is surveyed as well as those portions

of the spectrum which provide systematic variations.

Results and Discussion

The results of the evaluations of composite shell efficiencies are
discussed here in sections. In the first section the interplay between
the magnitude of the design loading and the structural configuration
employed to support the load is considered, to insure that the results
are not inequitably influcnced by the configurations chosen. In the
second section, the conclusions drawn from this consideration of the
significance of configuration are focussed upon the evaluation of hol-
low fiber reinforcement. Here some of the aspects of the importance
of fiber stiffness are first demonstrated, and then they are examined in
detail in the third section. Finally, the importance of binder stiffness

is assessed.

Effects of Configuration

Metal Shells - The basis used for the evaluations of fibrous composite
shells is established in Figure 3, Here are plotted the weights of cylin-
drical shells of a wide range of types of metals, and fabricated in a variety
of sandwich proportions, designed to carry intensities of loadings of from
a small fraction of-to many time those-appropriate for launch vehicles,
as shown. Characteristically a shell of any material is heavier than the
the weight required to carry the design load at the material yield stress

o
(represented by the lines of 45 slope at the right of Figure 3) by the

11



weight of the additional material needed to stabilize the shell against
buckling. Generally speaking the greatest weight is required with the
stiffening added simply as increased shell thickness, giving a pure mono-
coque construction (the upper curves on the figure). For the monocoque

buckling below the yield stress, the weight is proportional to r as is
,/E

well known, and beryllium is a currently rccognized minimum-weight metal
for the idealized monocoque shell, - especially in the low loading intensity

regime of interest for launch vehicles,

Clearly, however, Figure 3 shows that for the metal shell more is to
be gained by a change from a monocoque to an efficient stiffening configur-
ation like a low-density-core-material sandwich than by the use of even
such an efficient material as beryllium. In fact a steel faced sandwich with
a light core may be lighter than a beryllium monocoque shell, -indced will
be lighter than a beryllium faced sandwich on the same core if the core
densities are low enough or the loading intensities high enough (the area
shown to the right of Figure 3) so that the higher strength-to-weight ratio

of steel compared to beryllium can be utilized.

Important to the composite evaluations to which this study is directed is
the implication of the preceding paragraph that the optimum material de-
pends upon both loading that must be carried and upon the structural config-
uration employed. 1ln consequence both the range of loadings and range of
configurations of interest must be surveyed for proper assessment of the

potentials of composites. Herein the effect of varying overall configuration

12



is determined by a variation in the hypothetical sandwich core density.
The results of this variation are generally the same as variations in

the effectiveness of other types of stiffening. Thus, a very light weight
core represents to a degree, for example, very efficient integral ribbing

on the shell, or highly efficient ring-stringer reinforcement,

One further aspect of the importance of configuration in the evaluation
of material efficiency is brought out by the reference shell efficiencies
calculated for the variables included in Figure 3. Whereas for the elastic

monocoque shell the weight is proportional to —p—— as previously noted,
v E
this relationship does not apply for sandwich shells even for the heaviest

core density given in Figure 3. For values of the ratio of face sheet to
core densities large compared with unity, it can be shown that the shell
weight for a given core density is proportional thp—/-E. The shell weight
required in the elastic buckling range may be measured simply by the
efficiency parameter, F, of Equation 4. Here F is a function of shell
moduli and density., Values of F are plotted in Figure 4 for monocoque
and sandwich shells of the five metals used in Figure 3. As shown, values
of F for the monocoque configuration plot on the expected straight line of
45° slope when the abscissa is74-E-, but for the sandwich the abscissa must
be changed to(_L_)llz. Thus even for elastic buckling the configuration
affects the relatEionship between material properties and shell efficiency,
though perhaps not as profoundly as when a change from elastic to plastic

behavior is involved.

13




Composite Shells - With fibrous composites additional degrecs of

freedom are available compared to metal construction. Not only may

cach reinforcing material be employed in a variety ol binder materials,

but also various volume fractions of the constituents and fiber orientations
may be used. Typical effects of binder content arc illustrated in Figure 5,
Figure 5 shows the elastic buckling efficiences at a typical sandwich core
density, and hence applies to the low load end of the range. Variations in
clastic buckling efficiency as measured by the valucs of F plotted in Figurc 5
are rather surprising in that relatively small concentrations of the high-
modulus filaments are sufficient to produce materials with buckling effective-
ness comparable to structural metals. Accordingly, for the very light
loading for which strength is not important, low volume fractions of advanced

filaments may be of interest.

Disappointingly inefficient are the results for the hollow E-plass filaments,
These results have sufficiently sweeping implications regarding geometrical
effects to warrant special attention, and some of these implications are there-
fore reviewed in the following section on the effects associated with the use

of hollow fibers.

Effects of Hollow Fibers

Hollow fibers provide a reduction in density,'o , of composite material
s
together with a high ultimate compressive stress-density ratio (Reflerence 7).

At the same time the hollows reduce the elastic stiffnesses and the absolute

1k
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values of strength. Because of these reductions, with E-glass, as
pointed out in the preceding section, for sandwich shell faces the hollows
are not effective, and indeed compared to metal shells, hollow E-glass

reinforcements appear attractive only for monocoque shells.

Factors which combine to make hollow E-glass ineffective are (1)
the fact that for a sandwich face material, density is not as important a
characteristic as for a monocoque shell, and (2) the low transverse stiff-
ness properties calculated for the hollow fibers. As previously pointed
out, for a sandwich the efficiency varies inversely as only the square
root of the face material density, where for the monocoque the efficiency
varies as the inverse first power of the density. The low transverse
stiffness found for the hollow glass is a less obvious problem, however,
that deserves further consideration. Perhaps, for example, the analysis
of the hollow fiber transverse stiffness is more open to question than the
solid fiber calculations. For both types of fibers the values used are the
average of upper and lower bounds but in the case of the solids the bounds
are not far apart so that this procedure is open to no substantial variation no
matter which bound is the more applicable. For the hollows, on the other
hand the upper-bound transverse stiffness at 30% binder is approximately
twice the value for the lower bound. Thus, the hollow fibers may be ap-

preciably better (or even worse) than the mean value indicates,.

Regardless of the accuracy of analysis, perhaps of greater significance

15




for future prospects is the fact that stiffer materials than E-glass should
perform better transversely in an epoxy matrix. This effect is illustrated
in Figure 6 where the calculated ratios of transverse stiffness (upper and
lower bounds) for hollows and solids are plotted against volume fraction

of binder for alumina and E-glass fibers. The curves for the alumina arce
above those for E-glass over the entire range of concentrations, being
about twice as great at the normal 30 volume percent binder. In other words
not only is the transverse stiffness inherently higher for alumina than E-
glass reinforcement, but also the hollow alumina performs twice as well
compared to solid as the E-glass does. In sum, hollow E-glass fibers in
epoxy binder appear promising only for increasing the efficiency of shells
in applications for which material density is of prime importance, as for
monocoque construction. Hollow filaments of higher modulus than E-glass

may be relatively more favorable.

The Importance of Fiber Stiffness and Density

That the use of high modulus/density ratio filaments like boron should
increase the elastic buckling efficiency of composite shells is to be expected,
and the effect is demonstrated by the values of F given in Figure 5 for
sandwiches and Figure 7 for monocoque construction. In order to determinc
just how effective improvements in filaments may be, the filament density
and modulus will be treated separately, The face sheet density is related to
the fiber and binder densities by a simple mixtures rule., When the fiber
weight is a large fraction of the composite weight, as it is for high volume

fractions of most fiber materials, then the variation of F with fiber density

16



is of essentially the same form as that of the variation with face density
1/2 :

(i.e., withp for monocoque and p for sandwich construction)., The
f

variation of weight with modulus is most readily studied by plotting F as

a function of Ef for the family of constant density fibers shown in

Figure 2b. For example, Figure 8 presents such results for sandwich

shells having isotropic and uniaxial face sheets. The slope of the best

fit straight lines can be used to determine the exponent of fiber modulus

in the assumed weight variation:
m n
F = E
Kpf ¢

These results are combined to yield the results shown in Figure 9. The
exponents have been rounded off to fractional powers as greater accuracy
is certainly not justified at the present. Similar results are presented in

Figure 10 for the monocoque shell. Correlation of the data are indicated

by comparison with curves of 45° slope on the log-log plots of the figures.

Approximate correlation is found if the following powers of Young's modulus

are employed:

for 0° reinforced monocoque shells

(2) F o L for Isotropic monocoque shells
173

E
f
o
(3) F gc,_jl[ s for 0 reinforced sandwich shells
F
f
(4) Feg 1 for Isotropic sandwich shells
E I72
f

17
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(Correlation is established as for the metal shells by comparison with

curves of 45° slope on the log-log plots of the figures.)

Thus it appears that the elastic buckling efficiency of composite shells
is a rather insensitive function of the modulus of the fibers. For the
configuration of greatest probable interest, however, (the isotropic
sandwich), the sensitivity is greatest, and in thig case an incrcase in fiber

modulus is nearly as effective as a decrease in fiber density.

Throughout this section only epoxy binder at 30% volume fraction has
been considered. Effects of binder changes will be considered in the

following section.

The Importance of Binder Stiffness and Density

The use of improved binder material compared to epoxy resin can have
several important effects. First, by enhancing tl_ne transverse and shearing
stiffnesses, it can reduce the difference in buckling efficiencies of the 0o
and Isotropic reinforcement configurations. This effect is illustrated in

Figure 11.

In Figure 1lare plotted the buckling effectivenesses of composite sand-
wiches made with very high modulus filaments like alumina embedded in
a variety of metallic binders., The plots show that for all binder volume
fractions there is little difference in efficiency for the 0° and Isotropic

configurations, although the Isotropic cases are always the lighter. For

18



comparison, the F value for berylliurmn sandwiches is also given on the
figure; for purely elastic buckling it is exceeded in efficiency only at
high volume fractions by the boron-like binder. However, it should be
rccalled that, even for the low loading intensities of launch vehicles,
such beryllium sandwiches would be stressed beyond the clastic limit,
and any of the alumina-reinforced composites would therefore be more

efficient in application.

The effectiveness of improvements in binder material properties is
similar to that of filament properties. Even with an Iadvancgd filament
like boron, the buckling efficiency is improved comparecd to epoxy binder
by either an increase in binder modulus or a decrease in binder density
(see Figure 12). Evaluation of the magnitudes of the improvements
(Figure 13) show that they depend only-‘on the one-sixth power of the
modulus, for monocoque rather than sandwich shells again the density

is of greater significance, F&& 3_b , approximately.

b

Conclusions
The conclusions derived from the complete investigation of the influence
of constituent properties upc')n the efficiency of composite shells are as
follows:
1. Loading intensities for launch vehicles are so low that elastic
buckling governs the compression design for all but the most efficient stif-

fening configurations.

19



2, For sandwich construction the elastic shell buckling efficicncy
is no longer proportional to the ratio of shell density to the squarc
root of Young's modulus ¢ as for a monocoque shell, but rather

E
is proportional to / e for the sandwich face material.
E

3. Composites reinforced in an isotropic laminate configuration

by advanced filaments like boron and alumina are superior to the best

metal shells for the most structurally efficient applications for launch

vehicles.

4. Relatively small concentrations of high-modulus filaments in an
isotropic configuration produce materials with buckling effectivencss

comparable to structural mectals.

5. Hollow fibers appear promising only for shell buckling applications
for which density is of prime importance, (for example; monocoque shells,
minimum-gage cases).

6. The relation between shell buckling efficiency and filament properties
varics with configuration. In gencral the cfficiency is a weak function of
the filament modulus and a stronger function of filament density. For the
most cfficient configuration (isotropic laminate sandwich) the efficiency
is proportional to the square root of the filament density and slightly less

than the square root of the inverse of the modulus.

7. The relation between shell buckling efficiency and binder properties
is similar to that for filaments but is an even weaker function. Thus, for

the isotropic sandwich shells the efficiency is approximately proportional

20



to the one-sixth power of the density/modulus ratio.

8. Failure criteria for composite shells need further intensive in-
vestigation. Such problems as those of maximum shear stresses in

laminates in compression need evaluation.

21



STATUS OF MICROMECHANICS STUDIES

During the course of this NASA sponsored program for the study of
composites (see Refs. | and 2), the authors have undertaken studies of thosc
aspects of the mechanics of composites which are on the one hand necessary
to provide an understanding of the synthesis, design and response of compo-
site structural laminates and which, on the other hand, have not been ade-
quately treated in the existing literature. It is, therefore, appropriate
at this time to discuss the relationship of these NASA contract results to
other related studies in the open literature. The aim of this review is not
to provide a comprehensive critical literature survey, but rather to examine
a limited number of existing solutions of problems of interest for subsequent
studies. The status of the micromechanics studies to be used in this program

will thus be defined.

A concept which simplifies many aspects of the analysis of composite
materials is the recognition that for most static loading conditions, the fiber
cross-sectional dimension is small compared to the structural dimension
and to the dimension over which a significant variation in applied load or dis-
placement occurs. Thus it is reasonable to consider the average stress and
strain in the composite, rather than the actual stress and strain distribution,
This permits the representation of the inhomogeneous isotropic composite
by an equivalent homogeneous anisotropic material where the response of the
latter to imposed boundary tractions or displacements is equal to the average

response of the former to the same boundary conditions., Several approaches
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to the problem of relating the elastic constants of the '"effective' material to
the properties (mechanical and geometrical) of the constituents are treated in
the following section. Although the understanding of average response is ade-

quate for many structural applications, a treatment of composite strength
generally requires a knowledge of some details of the internal stress distribu-
tion. Analyses of these stresses are described under "Internal Stresses'.
The utilization of the internal stress solutions in the treatment of composite

strength is described in the "Failure Mechanics' section.

The elastic constants analyses define the moduli of the individual layers
of a composite laminate. The failure mechanics studies likewise define
lamina strength criteria. The results of these studies can then be used to
define overall laminate stiffness, strength and structural performance. For
;his aspect of the study, a substantial body of literature developed for plywood-
type materials, among others, is in existence. The applicability of these
studies is presently being evaluated (an indication of this is given elsewhere
in this report in connection with the stability of laminated shells). For this
reason and because of the existence of several recent literature reviews on this

subject (e.g., Ref. 8 and 9). The present survey does not include the subject

of laminate analysis.
Elastic Constants

The direct approach to the evaluation of elastic constants is to determine
the stress distribution in the inhomogeneous composite medium subjected to
various simple boundary conditions and then to obtain appropriate body averages.
These boundary value problems require the complete specification of the phase

geometry (e.g., the relative location of fibers over the cross-sectional
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plane normal to the fiber axes) and the extensive application of numerical
methods. This approach has recently been utilized for a hexagonal array
(Ref. 10) and a square array (Ref. 11} of circular fibers. These methods pro-
duce the desired results for a known geometry (although requiring the

use of high speed computers). However, they do leave unanswered the ques-
tion of the magnitude of possible variations in moduli associated with the
variation in cross-sectional location of fibers.

A second approach to this problem utilizes known and regular phase
geometries and gross approximations to the nature of the stress field. Thus
the materials are usually represented as various combinations of simple
elements in series and in parallel with one another (e.g., Ref.12 and 13).
Papers of this type range from simple approximations of the stiffness parallel
to the {ibers to transverse Youngs and shear moduli obtained by assuming
uniform strain or by assuming that the material can be representedby a truss, etc.
These methods can be justified as providing working estimates only if no
better methods are available. Thus at the present state of development they
are not of major importance.

The third approach to the elastic constants problem is the use of vari-
ational principles to obtain bounds on the desired moduli. In this method
the effective elastic moduli are expressed in terms of the strain energy and
bounds on the strain energy are found for simple applied average stress
and strain fields, thus also bounding the elastic moduli, This definition
of moduli in terms of strain energy is directly equivalent to the definition

in terms of average stress and strain. In the previous contract studies
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(Ref. 2}, strain energy methods were used to evaluate elastic constants

as functions of constituent moduli and volume fractions. Uniaxially oriented
circular fibers randomly distributed over a cross-sectional plane were con-
sidered. Such a material is transversely isotropic and is defined by five
independent elastic constants. These constants can be bounded for several
different types of geometries.

Several geometries of interest are shown in Fig. 14, The hexagonal
array is typical of the ordered arrays which are susceptible to rigorous
bounding procedures. The contrast between such orderly arrays and the
arrays which result from common manufacturing procedures are indicated
by comparison of the upper two sketches in Fig. 14. Indeed, the contiguity
between the fibers shown in cross sections of real fibrous composites has
motivated some interest in the possible effect of continuous or semi-continuous
load transmission paths through the fiber material. The extreme of such
geometric considerations is represented by the arbitrary phase geometry in
which both phases are cylindrical but a cross-cection perpendicular to the
generator of the phase geometry interfaces is completely arbitrary and a
distinction between the two materials enabling one to identify a fiber and a
binder is no longer possible., Rigorous bounds can also be obtained for this
arbitrary geometry material (see Ref.14 and15). The problem, however, is
that the distance between such bounds is usually quite large and the value of

the upper bound for application to the case of rigid fibers in relatively less
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rigid binder materials is questionable. That is to say, it appears intu-
itively that a continuous binder phase will result in modulus values closer

to the lower bound of the arbitrary phase geometry material. Another set

of bounds exists. These are those of Ref. 6 for the special material also
shown in Fig. 14, This material is composed by taking concentric circular
cylinders of fiber and binder with the fiber material as the core and the
volume fractions of fiber and binder in this typical composite cylinder are
equal to those of the volume fractions of the two materials in the bulk com-
posite. These volume fractions are maintained in a set of cylinders

having various diameters which are used to completely fill out the entire
volume by going to an iﬁfinitesimally small fiber diameter, The bounds

for this material coincide for four of the five independent elastic constants.
These are the so-called random array results. For the real material,

it is always possible to surround each circular fiber with a cylinder of

binder material such that the fiber binder composite has the proper volume
fractions. However, the outer surface of the binder will not be a circular
cylinder. The results of the random array can be used as an approximation
to this real material by assuming that the strain energy in this irregularly
shaped composite cylinder can be approximated by the strain energy in a con-
centric circular cylinder having the same areas of fiber and binder. This as-
sumption makes the random array results directly applicable to the real material

behavior. However, there is some uncertainty associated with this assumption and
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alternate assumptions have been proposed in the form of interpolating fac-
fors between the upper and lower bounds of the arbitrary phase geometry
results. It should be noted that for those cases where the bounds of the
random array moduli are coincident, they also coincide with the arbitrary
phase geometry bounds when the binder and fiber materials are alternately
used as the core of the typical composite cylinder. This information is

of value in that it establishes for those cases the fact that the arbitrary

phase geometry bounds are the best possible bounds.

Various interpolation schemes have been proposed to yield a set of
values for elastic constants which can be used in structural analysis. Tsai
(Ref. 16 ) has proposed that a linear interpolation between the upper and lower
bounds is a proper approach. The contiguity factor represents the inter-
polation between the bounds. Wu (Ref. 17) has proposed an interpolation
factor based on physical reasoning which has recently been shown to be
equivalent to a linear interpolation factor between the bounds. Such approaches
assume that a single interpolation between the bounds will be valid for ail
volume fractions when dealing with a pair of constituents in a fibrous com-
posite. Further, their value is quite limited unless the interpolation factor
is also insensitive to the ratio of the elastic constants of the two phases.

Such questions can only be answered by comparison with experimental data.
The experimental data for the moduli in question, which are notably those

in the transverse plane, are quite limited.
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An indication of the relative position of the various bounding curves
discussed above is provided in Fig.15. The transverse bulk modulus is
plotted here as a function of the binder volume fraction for constituents
having a ratio of elastic moduli of 100, This ratio is appropriate, for
example, for boron reinforced epoxy. For the transverse bulk modulus
the random array results coincide, and as pointed out earlier, this result
is also equal to the lower bound for the arbitrary cylindrical phase geometry.
These curves are also shown on the figure, and note that at reasonable
volume fractions the upper and lower bourds differ by about an order of
magnitude. Also shown on this figure are the results obtained by Paul
(Ref. 18) for isotropic composites of these same materials. That is, an upper
bound equal to the popular "rule of mixtures' and a lower bound which is
essentially the equivalent of the two materials located in a series path in
resistance to the load. The proximity of these latter two curves to the
arbitrary phase geometry results emphasizes the problem of using the
arbitrary phase geometry results. When these bulk modulus results are
used with the shear modulus results to obtain results for the transverse
Young's modulus, distinct bounds occur since the bounds for the shear
modulus are not coincident., This is shown in Fig. 1§ where the transverse
Young's modulus for glass reinforced plastics is plotted as a function of the
binder volume fraction. Again the random array upper and lower bounds
are shown, the arbitrary cylindrical phase geometries upper and lower

bounds are shown, and the experimental data available in the literature (Ref,
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16) are plotted. An interpolation curve two-tenths of the distance between

the lower and upper arbitrary phase geometry bounds is plotted. This

value is suggested in Ref. 16, Note that both the C = 0.2 and the random
array upper bound are good approximations to the experimental data over
the range for which such data are available. No rational choice between
these two curves for use as design data can be made on the basis of this
comparison. However, a different result occurs when experimental data

for boron reinforced plastics (Ref. 19) are plotted as in Fig.17. Here the
greater distance between upper and lower arbitrary phase geometry bounds
results in a greater separation of the C = 0.2 curve from the lower bound.
Here it is seen that C = 0.2 is now a poor approximation to the experimental
data while the random array upper bound remains a good result. Although
these data are too limited to justify the conclusion that interpolation schemes
are not useful, they do seem to indicate that the random array result is at
this time a more rational choice. A comparison between these random
array results and the few existing exact solutions is also of interest. For
this purpose we can compare the Hashin/Rosen bounds (Ref. 6) to numerical
solutions for hexagonal arrays obtained in Ref.10, and to solutions obtained
for random arrays of circular holes and rigid fibers in an elastic plate

(Ref. 20).
The data of Ref,10 are in the form of a computed matrix of elastic con-

stants, g, in the form:
1]

29




i

o; j;i 5j
= [o] = [q11e]

The comparison of these results with those of Ref, 6 is best accomplished

(9)

by transforming the former according to the following relations:

1
Koz = 7 (8 *+ 822 %812+ &)

1
Ga3 = 7 (811 7%822 -82 ~821)

2
_ (813 * 833 * 831 + 83;)
By =gy (10)
(8 +8,, t 8, T8y
g3 8
+ - 13 * 831
21 g + €52 T gt 8y
Gy = & (gy + 8s5)
12 T 3 1844 7 B55

where the left-hand side of the above equations is in the nomenclature of
the present paper and the right-hand side is in that of Ref.]0. Note that
where different numerical results were obtained for symmetric terms of
the elastic constant matrix, they were averaged. The comparison between

the results of Refs.10 and 6 appears in Table 5.

The results of Ref. 20 which lend themselves to comparison are those
for the plane stress bulk modulus, K123. These can be obtained from Ref.

20 by reading values for Young's modulus and Poisson's ratio from curves
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presented in that paper (with limited accuracy because of the small size

of the graphs) and computing.

I E
sty (i

Similarly, the plane stress bulk modulus, K123, is related to the plane strain

bulk modulus, RZ3’ from Ref. 6, by:

Kl=

(12)

o %

_ 2
where ¢= 1+ f_gil__
1

The resulting values are plotted in Fig. 18.

Because of the greater flexibility and simplicity of the strain energy
results of Ref. 6 , the curves in Fig. 18and the data of Table 5 can be inter-
preted as supporting the use of the Hashin/Rosen Bounds for computation of
the effects of variation in any of the constituent properties. The numerical
methods (i.e., Ref.10 andll) are also limited to very specific regular arrays
in the sense that the existant complexity would be greatly multiplied if it
were necessary to use a typical element involving more than one fiber as
the basis for the numerical analysis. In conclusion, it appears that the
methods of Ref. 6 are the most suitable results presently available for
use to obtain average elastic response of fibrous composites, Utilization

of these results in laminate and structural analysis has been discussed
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elsewhere. It should be emphasized that the discussion heretofore has
related to the elastic constants of a matrix stiffened by a uniaxial set of
fibers. The application of these results to the study of a matrix stiffened

by a three-dimensional array of fibers is discussed elsewhere.

In addition.to the references described above, one should also consult
the comprehensive critical bibliography of the mechanics of heterogeneous

materials contained in Ref. 21,

Internal Stresses

The evaluation of the details of the stress distribution in a fibrous compo-
site can be important for the study of failure mechanisms. Overall inelastic
response or failure may be studied without knowledge of the local stresses,
by the use of limit analysis theorems, for example. However, models
such as that of the statistical tensile failure study (Ref.l ) do serve to
emphasize the usefulness of a knowledge of the stress distribution, particu-
larly in the vicinity of initial small internal fractures. This attempt to relate
failure processes to constituent characteristics is based on the hypothesis
that given a complete set of constitutive relations for a uniaxial fibrous
composite, it will be possible to determine the behavior of a laminate of
layers of uniaxial composites and thereby to have relations defining mater-

ial behavior which are suitable for complete structural analysis, In this
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section we will be concerned with studies of the internal stress distribution
of the heterogenous material represented by a fibrous composite. The appli-
cation of these studies to the definition of failure mechanisms and the estab-

lishment of rational failure criteria will be treated in the subsequent section.

Here, as in the case of the elastic constants a complete solution of
the stress. problem is a complex undertaking; hence, the literature consists
of a limited number of exact and approximate solutions based on idealized
constituent geometry., Numerical methods for determining the elastic stress
distribution when the fiber array is a regular one have been discussed in the pre-
vious section. Further work is required to obtain the influence of non-uniform
fiber spacing Upon the stress distribution. These results would be of prin-
cipal value for consideration of the failure mechanisms associated with loads
applied in a plane transverse to the fiber axes. For loads applied parallel to
the fiber axes, the initial internal failure is generally considered to result
from a flaw or imperfection in the fibers. Thus, the stress analysis of inter -
est for the discussion of failure mechanisms for loads in the fiber direction
is the one associated with the perturbed stress field in the vicinity of a fiber,
The stresses in the vicinity of such a discontinuity do not lend themselves
readily to analysis. This has resulted in a variety of approximate treat-
ments most of which assume that radial symmetry exists. The work of
Dow (Ref. 22 ) appears to be the initial treatment of this problem. His
analysis utilizes the shear lag approximation that extensional stresses in

the binder are negligible with respect to those in the fiber and that the shear
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strains in the fiber are small compared to those in the matrix. This analysis
has since been repeated in other studies and has also been utilized as the
basis for a three-concentric cylinder model (Ref. 2 ) where the third

cylinder attempts to represent an average effect of thé surrounding material,
These models generally retain some realism with regard to the-constituent
geometl;y but involve gross approximations of the stfess field. An alternate
approach utilized by Sadowski (Ref. 23) considers an exact plasticity analysis
for fiber geometries which approximate the true configuration. Thus, fibers
having ends of an ellipsoidal shape which are perfectly bonded to the surround-
ing matrix material have been studied. The results of these studies, however,
indicate that a large portion of the load carried in the fiber is transmitted

to the matrix by stress components normal to the interface and localized

at the end of the fiber. These re sults are thus perhaps most appropriate for
discontinuous fibers prior to an interface failure. The influence of interface
shear stresses appears to be better represented in the shear lag type models.
Sadowsky has also presented a two-dimensional analysis for rigid fibers

with alternate fibers discontinuous (Ref. 24). A two-dimensional model

has also been utilized by Hedgepeth (Ref. 25) for extensional fibers

using the shear lag analysis assumptions to approximate the stress field

in the matrix. In a general way, all of the studies de\scribed above support
the conclusion that the load is transferred around a digt\:ontinuity in a fiber,

in a very short distance by relatively high stresses. Hawever, the details

of the load transmission, which is the important consideration in a failure
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mechanism analysis, can be quite different, as will be shown by a compari-

son of the results of Refs. 2 and 22.

The interface shear stress is given in Ref. 2 (with some changes in

notation) as: »
r

v YV
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v Ya 2 .
e B () (2)
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Gb = Shear modulus of binder (matrix)
E¢ = Young's modulus of fiber
vy = Fiber volume fraction
x = Distance from fiber end
re = Fiber radius
O;°= Extensional stress in the fiber at a large distance from
the fiber end
U = Interface shear stress

The interface shear stress is given in Ref. 22 (again with some changes

of nomenclature), as:
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_where P = the effective load differential between filament and binder

A = Filament area E‘= Young's modulus of binder

24

Fiber length ¢ = Coordinate from fiber midpoint
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For a comparison between this solution and that of Ref. 2, the stress

distribution at a large distance from the filament end should be the same.

Thus:
Peve ( £
-_— = + (t=Vv —
£
And, for long fibers

‘\j:'-‘ = ;,_'\"[c-sl(o\-i)—-su‘.l\(&i)] (16)
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where, A , is given in Ref., 22 by:
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This value is based on an assumed distribution of shear strain across

the binder material. For a constant shear strain the above expression

would be altered to yield:
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The results of Ref, 25 can be utilized to yield
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The maximum shear stresses as found from the three references
can then be compared. The values of A given by Equations (17gnd (18)
are found to be essentially identical for the cases considered and therefore
only one result of Ref. 22 will be plotted, Fig. 19shows the variation of
the normalized maximum shear stress with fiber volume fraction for elastic
constants appropriate to glass reinforced plastic. The results for the two-
dimensional model of Ref. 25 (Equation 19) and the three-dimensional model
of Ref. 2 are nearly identical and, although similar in shape, substantially
smaller in magnitude than those of Ref.22. In Fig. 20 the effect of constityent
moduli ratio at a fixed fiber volume fraction is presented. Here the results
of Ref. 22 differ in form as well as in magnitude from those of Refs. 2 and
25 . It appears that a well conceived set of ex.periments would be a desirable

contribution.
Failure Mechanics

The efforts to analyze the failure mechanisms in composites have met with
most success in the problems of load applied parallel to the fibers of a compo-
site containing a uniaxial fiber set. It is on this subject that attention will be

focussed in the present review, treating both tensile and compressive loads.

Tension - The results of some of those studies which need not be con-
sidered here can be found in Ref. 26. One of the early models which still

retains popular appeal is that of Ref. 27. That model is based on the assumption
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that constant strain exists throughout the composites and that fracture

occurs at the failure strain of the fibers alone. Although this model offers

many conveniences, for example, it permits the use of the ''rule of mixtures'

as an estimate of composite strength, it must in general be discarded for the
following reason alone: The high strength and stiffness filaments which make

the potential for composites seem high generally have brittle failure characteris -
tics, which are subject to the statistical distribution of flaws and imperfections
inherent in brittle materials., Some way of coupling the statistical nature of

the strength of a filament to that of the composite is essential. Such an approach
was suggested by Parratt (Ref. 28) who proposed that composite failure

occurs when the accumulation of fiber fractures resulting from increasing

load shortens the fiber lengths to the point that further increases in load

could not be transmitted to the fibers because the maximum matrix shear

stress was exceeded. Thus the fiber fractures were eventually followed by

a shear failure of the matrix, producing composite failure,

It seems reasonable to treat a model which contains a set of parallel
fibers which are strong and stiff with respect to the matrix material in which
they are imbedded. The fibers are brittle and their strength varies substantially
from point to point along their length. When such a composite is subjected
to a tensile load a fiber fracture will occur at one of the serious flaws or
imperfections. When such a fiber breaks, the stress in the vicinity of the

broken fiber is perturbed substantially so that the axial stress in the fiber
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vanishes at the fiber break and gradually builds back up to its undisturbed
stress value due to shear stresses being transferred across the fiber matrix
interface. The general form of the fiber stress is disturbed for only a

short dimension. When such a break occurs, several possibilities for the
future behavior of the composite exist. First, the high interface shear
stresses could produce interface failure which could propagate along the
length of the fiber reducing the fiber effectiveness over a substantial fiber
length. In order to achicve the potential of the fiber strength it is necessary
to study and determine the fabrication conditions which will yield an inter-
face sufficiently strong to prevent this interface shear failure. This can

be done either through the use of a high strength bond or a ductile matrix
which permits redistribution of the shear stresses. In the latter case the
length of fiber which is affected by the break will increase as it will take a
'longer distance to retransmit the stresses back into the fiber at the low stress
level of a ductile matrix. With a strong bond, the interface conditions can
be overcome as a potential source of failure. The fracture toughness of

the matrix must also be considered to prevent the propagation of a crack
through the matrix and parallel to the filaments. A second possibility is
that the initial crack will propagate across the composite resulting in failure,
This is influenced by the fracture toughness of the matrix and again, since
it is clear that with brittle fibers one can always expect a fracture to occur
at a relatively low stress level, it is important that the fracture toughness
of the matrix material be sufficient to prevent the propagation of this crack

across the composite. If these two potential modes of failure are arrested,
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it will then be possible to continue to increase the applied tensile load and

to obtain breaks at other points of imperfection along the fibers. Increasing
the load will produce a statistical accumulation of fiber fractures until a
sufficient number of ineffective fiber lengths in the vicinity of one cross-
section interact to provide a weak surface, At the point of incipient fracture
all of the failure modes described may very well interact to produce the final
fracture. The desirable approach might well be to establish a statistical
tensile failure model (as in Ref. 29) and to incorporate the possibility of crack
propagation failure modes, as defined in Ref. 30 - 32, prior to the statistical

fracture.

This statistical model of failure has been discussed in some detail in
Ref. 29. The model which was used to evaluate the influence of constituent
properties upon the tensile strength considers that in the vicinity of an indi-
vidual break a portion of each fiber may be considered ineffective, as discus-
sed previously. The composite may then be considered to be composed of
layers of dimension equal to the ineffective length. Any fiber which fractures
within this layer will be unable to transmit a load across the layer. The applied
load at that cross-section would then be uniformly distributed among the un-
broken fibers in each layer. The effective stress concentrations which would
introduce a non-uniform redistribution of these loads is not considered initially.
A segment of a fiber within one of these layers may be considered as a link

in the chain which constitutes an individual fiber. Each layer of the composite



is then a bundle of such links and the composite itself a series of such
bundles. Treatment of a fiber as a chain of links is appropriate to the hypo-
thesis that fracture is due to local imperfections. The links may be considered
to have a statistical strength distribution which is equivalent to the statistical
flaw distribution along the fibers. The realism of such a model is demon-
strated by the length dependence of fiber strength. That is, longer chains
have a high probability of having a weaker link than shorter chains, and this

is supported by experimental data for brittle fibers which demonstrate that
mean fiber strength is a monotonically decreasing function of fiber length.

For this model it is first necessary to define a link dimension by consideration
of the perturbed stress field in the vicinity of a broken fiber. It is then neces-
sary to define the statistical strength distribution of the individual links which
can be obtained indirectly from the experimental data for the fiber-strength-
length relationship. These results can then be used in the statistical study

of a series of bundles and utilized to define the distribution for the strength

of the fibrous composite.

For fibers which can be characterized by a Weibull distribution of the
strength of a series of individual fibers of a specified gage length iested to
failure, it is possible to represent the fiber reinforced composite strength

with a closed form solution, In particular, the statistical mode of the com-

-
posite tensile strength, 0; , is found to be:

)
/P (20)
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where vg The fiber volume fraction
oL ,F The two parameters in the Weibull frequency distribution,
g(0’), for strength of individual filaments,
e The base of natural logarithms.
s A characteristic length for the perturbation of the stress -

field produced by a fiber break (the "ineffective length').

This is based on individual filaments characterized statistically by the frequency

distribution function given by:

j(o’)-.: LqFo’F—'exr(— Logd"p) 21)

where L gage length for individual fiber tests.

O~ stress at fiber fracture

Certain results of this analysis are presented in Fig. 21 (reproduced
from Ref, 1, with typographical errors corrected). Here the compsite
strength, normalized with respect to the mean strength, O-i , of individual
fibers of length, L, is plotted as a function of the coefficient of variation,

/“ , of individual fiber strength values. The variation, /ﬂ , is the standard
deviation divided by the mean fiber strength. Curves are shown for various
values of the ratio of fiber test length to "ineffective length''. It is seen

that for reference fibers of length equal to the "ineffective length', that

is for the basic bundle of fiber links of the model described previously,

the statistical mode of the composite strength is lower than the mean fiber

Lo .



strength by an amount which increases as the coefficient of variation of

the strength of the individual fibers increases. For more practical length
ratios, L/8, (that is, for single fibers tested at gage lengths large compared
to the "'ineffective length'') the analysis indicates that composite strength

is larger than thc mean fiber strength. In order to explain these results,
consider the size effect on composite and on fiber individually. The prac-
tical composite specimen is large as compared with the fiber link. That

is a composite cross-section contains many fibers and the composite length
is many times the ineffective length, For this composite, the strength is
insensitive to changes in composite dimension. Thus the composite strength
defined by equation 20 is valid for practical composites regardless of size.
However, an individual fiber has a strength which is a strong function

of length. There is an increasing likelihood of encountering serious flaws

as fiber length increases and hence mean fiber strength decays monotonically
with increasing fiber test length. A very long fiber can have a low strength,
but when this fiber is incorporated into a composite the fiber break which
occurs at a low stress level will have a relatively unimportant effect on
composite strength. Thus the ratio of composite strength to mean fiber

strength is strongly dependent upon the length of the individual fiber specimens.

Note that the normalized strength ratio is close to unity for coefficients
of variation as large as 15%. However, the fact that the magnitudess of com-

posite strength and mean fiber strength are close to one another should not
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be taken to justify the hypothesis that composite performance is some
fraction of fiber performance. The frequently quoted "'strength conversion" _
results becloud the importancé of fiber coefficient of variation and fiber

test length.

Another way of viewing the significance of the result of the statistical
tensile failure model arises from the fact that the statistical mode of the
composite strength is equal to the mode of a bundle of filaments whose
length is equal to the characteristic or "'ineffective length''. Thus, the
difference between the strengths of a composite and a bundle of filaments is
equal to the difference between the strength of a bundle of fibers whose
length is equal to the composite length and that of a bundle of fibers whose
length is equal to the ''ineffective'' length. Since the latter is on the order

of 10 fiber diameters and the former many multiples of the latter, this is

a large effect. A plot of bundle strength, 01; , normalized with respect to com-
posite strength, 0‘: » (the statistical modes of both) is presented in Fig.22
as a function of the ratio of composite length, L , to "ineffective' length,

s , for a given value of the coefficient of variation,/l\ . The merits

of the compositing process are apparent herein,

With this information it is possible now to treat, as a final evaluation,
the composite tensile strength on a weight basis as a function of the consti-
tuent characteristics. The strength to density ratio of a fibrous compo-

site, normalized with respect to the strength to density ratio of the
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individual fibers tested, can be expressed as a function, r , of the fiber
volume fraction, Vi, the fiber to binder modulus ratio, Ef/G , the fiber to
binder density ratio, (‘f/ (b' the single fiber test gage length to diameter
ratio, L/df, and the fiber strength coefficient of variation,/u . It has pre-
viously been shown, that for this model, the effect of fiber volume fraction
is very nearly a linear one. The effects of the other variables are presented
in parametric form in Fig.23. Here, the normalized strength-density ratio,

Y , is plotted as a function of fiber coefficient of variation,/-t . The
product of the ratio, * , and the mean single fiber strength to density
ratio defines composite strength-density. Hence, the ratio ' will be larger
than unity when the compositing process results in a material which is for-
giving of scattered low strength fiber elements, and it will be less than unity
when even short gage length single fibers show a large strength dispersion,
These effects are illustrated in Fig.23 where it is shown that the larger the
gage length on which a given fiber strength level is achieved the higher the
composite strength will be. Also indicated is the fact that even for moderate
dispersions of fiber strength, the composite can achieve a large fraction of
the strength associated with very short length filaments. The effect of constit-
uent moduli is also shown and the beneficial effect of increased matrix modulus

is indicated.

This format provides materials design criteria for this mode of tensile

failure. For low fiber strength dispersions it is seen that the curves are nearly

horizontal and crack propagation effect is the more likely occurrence.
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It is of interest to note that the statistical tensile failure model can
be used to provide insight into the stress concentration effect. That is, it
is possible to account for a non-uniform redistribution of the load which had
been carried in a now broken filament. For example, a computation has
been performed for a simple triangular distribution function for the links of
the statistical model. This function is shown in the upper portion of Fig. 1l.
The model assumed that for every broken fiber there were two adjacent
fibers which carried a load equal to a multiple, k, the stress concentration
factor, of the load carried in the other fibers. The model was a gross
simplification of the real material, but it was intended to qualitatively
indicate a phenomenon. The maximum load in a bundle of links having the
given frequency distribution function is defined by the average stress at fail -
ure, c . Fig. 24 presents a plot of o-;:/b , as a function of the stress con-
centration factor, k, for two ratios of b/a, where a and b are the limiting
stresses of the triangular distribution function, "(6’) . Also shown are the
fraction of fibers which are broken at incipient bundle failure. Thus it
is seen that for high stress concentration factors the bundle strength decreases
as expected. In this case, the minimum bundle strength, for large k is of
course @ =a. More important is the sharp decrease in the fraction of
broken fibers at incipient failure as k increases. It is this effect which
clearly signals the change from a statistical fracture accumulation failure
mode to a crack propagation mode. In the latter it would be expected that

the fracture toughness studies would be of principal importance.

L6



Compression - The existing studies of compressive strength (Ref,33

and 34) are based on the hypothesis advanced by Dow {(Ref. 35) that the mode
of failure for a fibrous composite subjected to compression parallel to the
filaments is a small wavelength fiber instability. This mechanism is analo-
gous to the buckling of a column on an elastic foundation. As presented in
the previous annual report (Ref. 1) a simple strain energy evaluation of two

possible buckling patterns yields the following results:

For the "extension'' mode:

%

cT"zv[\{FFbEF ] (22)
c - “ 3 (l" V‘)
For the '"'shear' mode:
% = v &
£

A more exact approach to this would be to consider the model composite
of elastic layers and use the methods of Ref. 36. For this case the results

obtained are

e (5%) 1"
G, Ve
= Y (24)
c I~-vg PR N n(i-aVvg)
2 (1= ve)

¢

t—

£

where n =
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It can be seen that for fibers having a modulus that is large coinpared
to that of the binder: n-—o0. For this case, Equation (24) reduces to

Equation (2 3).

The studies of composite structural efficiency described elsewhere in
this report conclude that minimum-weight structures demand optimum stiffening
efficiencies, strlesses beyond the elastic range and consequent analysis of all
possible failure modes--with attendant improvement of the criteria for failure.
A rational extension of the above compression model is thus the inelastic case.
This can be obtained by considering the matrix to have a characteristic or
maximum stress level as well as an initial elastic modulus. For an elastic qerfectly
plastic matrix, the characteristic stress level would be the yield stress.
With the use of a secant modulus as the measure of effective material stiffness,
the elastic result can be extended to give a composite compressive strength
for inelastic matrices, This result, for the generally dominant ""'shear"

mode of compressive micro-instability is given by:

- 43
v, £, O
G = £+ Y
[
3 (._ v‘ b} (25)
where:
d-c = Composite compressive strength
E; = Fiber Young's modulus
Gy, = Binder shear modulus
O—Y = Binder characteristic stress level
v = Binder volume fraction
48
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vg = Fiber volume fraction

Typical results are plotted in Fig. 25, which shows the compressive
strength predictions for the elastic case as a function of the binder modulus.
The inelastic cutoff curves depend on both the fiber modulus and binder
"strength,'' Computations for glass and boron filaments in two different
binders are shown, It can be scen that the relative importance of changes
in binder modulus, binder ''strength'", and fiber modulus are greatly dependent
‘upon the initial or reference condition. For example, a composite containing
glass filaments in a matrix having a modulus of 0.25 x 103 psi and a ''yield"
stress of 15 ksi can be improved (in the sense of higher compressive strength)
by improving the strength of the binder, but is unaffected by an increase in
binder modulus and essentially unaltered by a change in fiber modulus.
However, composites of boron fibers in the same matrix could be improved
substantially by improvements in binder modulus but would be unaffected
by a change in binder strength or fiber modulus. This quantitative measure
of the influence of constituent properties upon composite performance can
be used in an efficiency analysis as being representative of the potential

compressive strength of uniaxial composites.

Some measure of experimental qualification of this analysis has been
obtained by a study of single filaments in a matrix subjected to compressive
loads, In the previous study (Ref. 1) photoelastic stress patterns were

shown for individual glass filaments embedded in epoxy matrix after a high
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temperature (250O F) cure, The resulting fiber instability was exactly

the type assumed in the present analysis., This instability has been observed
previously by other investigators (e.g., Ref. 37) but there has been some
question as to whether a loading strain applied subsequent to a room tempera-
ture cure would produce the same effect as the thermally induced strain.

In the present program a series of single filaments were imbedded in a

room temperature curing silicone rubber (GE RTV 615) and subsequently
loaded. The results are shown in Fig., 26 for glass, tungsten and boron
filaments, The wave lengths have been measured and they can be correlated
with the simple beam on an elastic foundation results of Ref. 38, From

those results it can be shown that the wave length, A , is given by

= — (26)

¢

) = Td LfE

where
J fiber diameter
E fiber modulus

‘g "foundation' modulus.

The 'foundation' modulus is unknown (not to be confused with the
Young's modulus of the matrix, which in this case is 70 psi) but it can
safely be assumed to be the same for all three fibers. Thus one would
predict that the buckling wave length would be proportional to diameter and

the fourth root of fiber modulus. In the previous study of buckling due to



thermally induced strains (Ref. 1), a set of glass filaments of different

diameters was treated and it was shown that, in accordance with Equation

25, the buckling wave length varied linearly with fiber diameter.

the results have been normalized with respect to the tungsten filament

wave length so that:

PO AW
Aw lu EH

where subscript W denotes Tungsten

The results for the specimens of Fig. 26 are as follows:

Table A - RTV - 615 Matrix Composites

Here

(27)

Fiber Fiber Fiber Fiber x A
Material | Modulus, E Diameter, d Wavelength,x — —)
A“ theo, '\" exp,
Tungsten | 50 x 106 psi 0.0020" 0.195" 1.00 1.00
Glass 10.5 x lO6 0.0038" 0.230 1.29 1.18
Boron 57.5 x 106 0.0051" 0. 460 2,64 2.36

Further confirmation was attempted with the use of a different matrix.

GE RTV-602 was selected for its nominally higher Young's modulus,

The

test, however, yielded a modulus of only 110 psi and the correlation of these

results is inexplicably poor, as shown below.
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Table B - RTV - 662 Matrix Composites

Fiber Fiber Fiber Fiber | A
Material | Modulus, E |Diameter, d | Wavelength, ) X )

_ — ] v heq “exp
Tungsten | 50 x 10° psi 0.0020" 0.260 1.00 1.00
Glass 10.5 x 10° psi 0.0038" 0.195 1.29 0.75
Boron 57.5 x 106 psi 0.0048" 0.430 2.49 1.65

Further study is required in this experimental area.

Indeed no report

on the status of micromechanics of fibrous composites would be complete

without a statement emphasizing the serious shortage of both reliable experi-

mental results and experimental methods for these materials.

Ref, 39).
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VISCOELASTIC FIBER REINFORCED MATERIALS

Introduction

Present fibrous composiles contain very strong and stiff fibers which
are embedded in a relatively soft matrix. The use of these materials for
long times under load raises the question of time-dependent material proper-
ties. An approach to this problem is described herein. Considered here is
uniaxial random reinforcement in which case is obtained an anisotropic
matcrial which has very great strength in fiber direction and is relatively
weak in the transverse dircction. A recent comprehensive appraisal and
survey of the subject of mechanics of fiber reinforced materials is given in

2180 .

It seems that at the prescent time the best understood aspect of mechanical
behavior of fiber reinforced matcerials is prediction of their elastic moduli in
terms of fiber and matrix moduli and internal geometry, though even here
much remains to be done. In the event of uniaxial random reinforcement, the
material is transversely isotropic and has five independent effective elastic
moduli. Hashin and Rosen [6] considered an idealized model of a random
array of parallel hollow or solid fibers embedded in 2 matrix. This model of
a fiber reinforced material will hence forth be referred to as a composite
cylinder assemblage. Closed form expressions for four elastic moduli and

bounds for a fifth modulus, of such an assemblage, were obtained in [6] .

In the general case of irregularly shaped and randomly placed fibers the

problem is a statistical one. The first steps in the treatment of this difficult
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reference to the present case, assume that a cylindrical specimen of
fiber reinforced material, whose generators are parallel to the fibers,
and which contains very many fibers, is subjected to boundary displace-

ments of the form

@@ (S, 1) = € () x (2.1)

i 1) J
(0L t <)

Here the range of subscripts is 1, 2, 3, a repeated subscript denotes sum-
mation, S is the bounding surface, t is time, E;j(t) are space constant strains
and xi are cartesian coordinates. Here and in what follows it is assumed
that the material is unstressed and undeformed for t<o. For (2.1) applied
the volume average strains are?ij(t) and because of assumed statistical
homogeneity they also are the local strain averages over large enough
subregions of the specimen. In the present case these subregions are

cylinders extending from base to base in the specimen. They are small

parts of the specimen, yet large enough to be representative of the material.

Assume now that €‘_(t) are given in the special form
13

?ij(t) = €?j H (t) (2.2)

where €_°_are constant and H(t) is the Heaviside step function. Because of
1}

. ) . o
assumed phase linearity the average stresses are linearly related to € .
1}

In general

- o
t C t) €
ij( ) ijkl() kl

al

(2.3)
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problem have been taken by Hill 1151 and Hashin L14] who have given
bounds for the five effective moduli, in terms of phase moduli and phase
volume fractions only. Moreover, it has been shown in L__l4_] on the basis
of the results obtained in L GJ that all pairs of bounds, except perhaps one,
arc best possible in terms of phase moduli and volume fractions. In other
words, to improve the bounds more information about the phase geometry

is required.

The motivation for the present study is the fact that the matrix in fiber
rcinforced materials is in many cases a resin which exhibits time effects.
The simplest model for such a time dependent material is a linear visco-
clastic one. Accordingly, the problem to be considered is that of the
prediction of macroscopic viscoelastic propertics of a material composed

of a lincar viscoclastic matrix which is uniaxially reinforced by elastic fibers.

It has recently been shown by Hashin L40] that elastic moduli and visco-
clastic relaxation moduli (and creep compliances) of heterogeneous materials
of identical phase geometry, are related by the analogy which has become
known as the corre'spondence principle. The purpose of the present investi-
pation is to exploit this analugy and the results given in L6] in order to derive
macroscopic viscoelastic properties for the composite cylinder assemblage
model of a fiber reinforced material which has been introduced and described

in Lb],

2. GENERAL THEORY

The effective relaxation moduli and creep compliances of linear viscoelastic

heterogeneous media have been defined in [40]. To recapitulate, with special
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where overbar denotes average. The components of the fourth rank tensor

C 3

ikl are defined as the effective relaxation moduli. They depend in general

upon the entire phase geometry.

Dually, let tractions of the form

T° (5,t) = 0 (t)x, (2. 4)

i 1 J
be prescribed. Here Oij (t) are space constant stresses and x, are the
1
components of the outward unit normal. Then the average stresses are

g,,(t). Again assume the special form
1)

o (t) = H(t) (2. 5)
1_] 1_]

o
where O are constant. Then the average strains may be written in
1

the form

- g o
Eij {t) = jijictl) Oij (2.6)

The Ji::'kl are defined as the effective creep compliances.
1j

For the general boundary conditions (2.1) and (2. 4) it follows by super-

position in time that

— it de, (1
% (t) = |, S (t-7) _% dr (2.7)
- t dg . (1)
- 2 - kil
€5 (t) = ‘L Jijkl (t-1) T’T dr (2.8)
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where in (&.7)? is € and in (2.8) E
.. . i

is 8,' .
1] 1j J 1

J

It is, however, clear that (2.3), (2.6) and (2.7-8) have a more general in-
terpretation, . They apply in any case where the specimen is subjected to statisti-
cally homogeneous states of stress and strain. The boundary conditions (2.1) and
(2.4) are merely a device to produce such statistically homogeneous fields. Therec-
fore, the average stresses in (2. 7-8) may be interpreted as tﬁe same quantities
and the same is true for the average strains. In the case of the present specific
boundary conditions such equivalence would fail only in a very narrow layer near

the boundary, and would hold further away.

In order to account for discontinuities in time of applied average strains
or stresses, primarily at t = o, the stress-strain relations (2.7-8) may
be written as Stieltjes convolutions. (Compare e.g. 141].) Here the Riemann
convolution form of (2. 7-8) will be used with the understanding that the inte-

grands may involve delta functions.

The one sided Laplace transform (LT) of (2.7-8) is given by

cij (p)=p Cijkl (p) €l (p) (2.9)
al Al ¥ ’
fij (p) =p J'ijkl (p) % (p) (2.10)

where p is the transform variable and the circumflex above a symbol denotes
LT. Because of the formal resemblance to an elastic stress-strain law the

quantitics 'né:'l:'kl (p) are termed transform domain (TD) effective moduli and
1

Al
the quantities pJ_ . = are termed TD effective compliances. Substituting
1

kl
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(2.10) into (2.9) it follows immediately that the TD effective moduli tensor

and the TD effective compliances tensor are reciprocal.

The fiber reinforced materials here considered are transversely isotropic,
the fiber direction being the axis of axial symmetry. Taking into account this
symmetry and also reflectional symmetry with respect to the transverse plane,
normal to the fibers, it follows exactly as for an elastic stress-strain law
that there remain only five independent TD effective moduli in (2.9). Referring

the fiber reinforced specimen to a cartesian system of axes x xX_ X

§ X5 Xg where x1

is in fiber direction and xzx3 are in the transverse plane, and adopting for con-

venience a six by six matrix notation for the effective TD moduli, Equation (2. 9)

can be rewritten in precisely the same form as given in [6J . Thus

G (P =pC) () G, () + R CY, () e, (B) + RCY, (B T, (P) (2.11)
5, (81 = PC, ()G () + 2 Cpy (BT, (B + B CFy (B) T, (B) (2.12)
%5 (P) = PC,(B) C, (P e (p) + P C, (R) &, () + 2 &, (B) G (p) (2.13)
G, ) =2pC (p) e, (p) (2.14)
93 B =2pCy, (B, (p) (2.15)
3, () =p [CZZ (p) - c; () ] €55 (P (2.16)

The TD stress-strain relation (2.10) can of course be written in entirely

analogous form,

Again, as in the elastic case, it is convenient to define the following four

physically significant TD moduli.
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PG, :%P (€, - C23)
('},’ - (‘_\,7: - I\;:: _ &:}:
P, TP, TP TPy
A A 2“ Z
pE =P l'l - 2pCy,

and to choosc pé:l':l as the fifth independent TD modulus.

Here I)I’<:ji is the plane strain cffective TD bulk modulus, pCA}23 the
cffcetive TD transverse shear modulus, pél the effective TD axial shear
modulus, pﬁ)l the cffective TD Young's modulus and péil is associated with

uniaxial stress in fiber direction, with transverse deformation prevented

by a rigard bonded enclosure.

The TD cifective compliances associated with (2.17 - 2, 20) and péfl
will be consistently denoted by corresponding small letters. From the
reciprocity of the TD moduli and compliance tensors stem the following

simple relations:

Ak
pk,,(pP)= ——
23 ij (p)
A 1
Pg23 (p) = mp)
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(2.18)

(2.19)

(2.20)

(2.21)

(2.22)



1 (2.23)

pg (p) = —
1 PG (p)
1
pe, (p) = —i— (2.24)
PE, (p)
i 1
pc _(p) = —— 2.25
n’’ pC; (P) (2.25)

The physical significance of the chosen effective relaxation moduli and creep

compliances will be further brought out in applications, below.

A correspondence principle for effective relaxation moduli and creep com-
pliances of viscoelastic heterogeneous media has been given in (407 for the
specific case of statistical isotropy. However, as stated there the corres-
pondence holds equally well for anisotropic heterogeneous media, the proof
being completely analogous to the isotropic case. Therefore, this corres-
pondence principle can be immediately written down for the present case of a

viscoelastic fiber reinforced material of transverse isotropy.

Consider first the case of a two phase elastic fiber reinforced specimen,
whose phases are linearly elastic, homogeneous, and for simplicity, isotropic,
Let it be assumed that for some specific geometry the five effective elastic

. B . . . .
moduli C are exactly known in terms of phase elastic moduli and geometrical
ijkl
phase details. Consider now a specimen of entirely identical phase geometry '

whose phases, however, are linearly viscoelastic, homogeneous and isotropic.
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Then the TD effective moduli, or in other words the LT of the effective
relaxation moduli and creep compliances, of the viscoelastic specimen

can be directly written down by making certain replacements in the expres-
sions for the effective elastic moduli of the elastic fiber reinforced material.
To explain these replacements, two different cases have to be considered
scparately. First assume that the viscoelastic phase stress-strain relations

arc of the differential operator type, thus at any point x in the rth phase

R (D)o (x,t)=5_(D) 7 (x,0) (2.26)

P (D) s”. (xt)
) x

ij

Q (D)e. (x,t) (2.27)
r ij —

r
where r = 1,2 is the phase number, D = d/dt, ¢ and si are isotropic and

1
. . r r r . . - .
deviatoric parts of the stress © , € ande  are isotropic and deviatoric
ij ij
r .
parts of the strain €., and Rr’ s, Pr' Q , are polynomials in D, Then in
ij r r

order to obtain the TD moduli of the viscoelastic specimen the following

replacement scheme should be used:

s
Kf: L W = % (p) (2.28)
> R_(p) Y
r
E 1 Qr (p) B
G, " 7 P TR ® (2.29)

E
where K and GEare the phase bulk and shear moduli appearing in the
r r

expressions for the effective elastic moduli C:JEI of the elastic specimen.
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In the second case assume that the phase stress-strain relations

are specified in the more general, hereditary integral form.

For the
rth phase
T t d T
of(x, t) = 3] Kplt-1) 5= eT(x, T)dr (2.30)
X o _ x
st(x, t) = 2J"tc(t r)-i ef(x, T)dT (2.31)
yr= o TVl oT i ’

where K, (t) and G.(t) are the bulk and shear relaxation moduli, respec-

tively, of the rth phase, Dually

t
r 1 e
€ (x, t) = gjo I(t-7) 3= o7 (x, T)dr (2.32)
1t 2
e (% t) = EJ‘O T(e-1 37 s3; (x, T)dT (2.33)

where I.(t) and J,.(t) are the bulk and shear creep compliances, respec-

tively. Then the replacement scheme analogous to (2,28-2.29) becomes

E ~
K. - pK.p)= »_(p) (2.34)

Gy" = p8,(p) = Tylp) (2. 35)
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It is important to note that when the viscoelastic specimen has an
elastic phase, as in the case to be considered here, the replacement
schemes (2.28-2,29) and (2. 34-2.35) show that the elastic moduli of

that phase are left unmodified in the replacement scheme.

Thus the problem of {inding effective relaxation moduli, when effective
vlastic moduli are known, is reduced to Laplace transform inversion.,
The effective creep compliances are lound in a similar way on using

relations of type (2.21-2.25).

The analogy which has been outlined above will be used to find the
viscoclastic counterparts of the elastic results obtained in [ 6]. While
the procedure is straightforward, analytical inversion of the transforms
is in general only possible if the phase stress-strain relations are of type
(2.26-2.27). Even for the simplest cases of Maxwell or Kelvin models
the inversion requires heavy calculations. It becomes prohibitively cum-
bersome for more complicated models. The situation is worse for stress-
strain relations of type (2.30-2.33) since in general the kernels are only
known numerically from experiment, whence the inversion must be per-
formed numerically, which generally requires a computer. Unfortunately,
the stress-strain relations of type (2.30-2.33) are the more important
ones from the practical point of view. It turns out, however, that
important conclusions about the effective relaxation moduli and creep

functions can be reached without LT inversion., This can be done on the
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basis of some general theorems relating the value of a function to its
transform which are known as Abel-Tauber theorems., The theorems

can be written in the following form (compare e.g. [42]).

lim f (t) = lim
0 (2. 36)
. ® - >o
t + p-o, n 1
where ?(p) is the one sided LT of a function f(t), and I'is the Gamma
function. Of particular importance for the present purpose is the special
case n = o. Then (2,36) reduces to
lim f(t) = lim pf(p)
(2.37)
t~o, pTt
t—+® P 0+
It should now be remembered that the TD effective moduli which are
directly given by the correspondence principle are of the form peljkl (p);
compare (2.9) and also (2.17-2.20). Thus from (2.37)
c* (o) =1limp & (p)
ijkl ijkl (2.38)
p Tt
ats AR
C. . (®»=lmpC,, (2.39)
it ¢ P Cip (P
PO,

6k
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(Henceforth, an argument o as in the left side of (2.38) is to be interpreted

1_]k1 (p) are found from the effective elastic moduli C:}kl

by the replacement scheme (2.34-2.35). Hence to find the right sides

as o+.) Now p c

of (2.38-2.39) it is necessary to substitute in C1JE the lii'niting values

kl
of (2.34-2,35) for p— + =, o,- Applying (2. 37) again

limp G (p) = G_(o)
r
p~+ =
lim p Gr(p) = Gr(“)
PTo,

and similarly for pf(r(p).

It follows that in order to find C=

) (o+) all that is needed is to replace
1)

2R

kE and G& in G
r an r in ljkl,

by Kr (o) and Gr (o), respectively. Similarly, in

ES B !
order to find Cijkl (=), K};: and Gr in Cijilacl’ are replaced by Kr (®) and
Gr(“’). Thus, the initial and final asymptotic relaxation moduli can be

simply found in terms of direct experimental information.

The result concerning the initial values of the moduli is physically
almost obvious since it merely asserts that the initial response is an
elastic one in terms of the initial elastic responses of the phases. The
result for infinite time is more interesting and quite important, since in

many applications the behavior after long time is all that is needed,
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Once the relaxation moduli for t = o+, « are known, the creop o ompli-
ances for the same timcs can be easily found, for as has been pointed out
above the tensors pC=_k, (p) and pJ’_p (p) in (2.9-2.10) are reciprocal,

ijkl ijkl

whence it follows from (2. 37) that c

:: (o) and J; (o) are reciprocal
ijk jkl P

i

and that C:,k_ (=) and Ji': ) (*) are reciprocal. For the special TD moduli
1) 1j

kl
and compliances defined in (2, 21-2,25), the values of a relaxation modulus

and a creep compliance at 0, ware simply mutually rcciprocal.

3. PLANE STRAIN DILATION

Assume that the fiber reinforced specimen is subjected to the average

strains
€ (ty=0 €52 (t) = €33(t) = €(t)

by choice of (3.1) as the strains in (2.1), Then the only non-vanishing
average stresses are—o_u(t), 822 (t) = 533 (t) =E(t). The stress-strain

law (2.11-2,13), in the time domain, then becomes

— t -
= -7 de(
°.® zj’o C, (&= dTT) ar

= = oo b e de (1)
a(t) =2 JO Kys (t-1 ——Tlar

Now assume average stresses

G, (1) =04, (1) =0 ()

retaining the plane strain condition ?11 (t) = 0. Then

t
= = - | % do
) =5, (=T =7 Gy (en) B0y
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where K"‘23 (t) and klz3 (t) are related by (2.21). To compute Eu(t),

(3.5) now has to be inserted into (3. 2).

In order to use the correspondence principle for evaluation of K
23

and k-r , the results for the plane strain bulk modulus of an elastic
23

fiber-reinforced material are needed. For the composite cylinder as-

semblage model introduced in L2 |, the results will be given for convenience

()

in the form used in U4] ’ . Thus
v
K = &E f
23 m | - (3. 6)
+ m
#F _ R E s + GE
f m m m

Here and henceforward, subscripts f and m denote fibers and matrix,
E
respectively, The symbol ® in (3.6) denotes plane strain elastic bulk

modulus which for the present isotropic phases is given by

£ = K t3 G (3.7)

E E
in terms of usual bulk and shear moduli, K and G

(*) Note that the expression equivalent to (3. 6), which was given in
L 6], contained errors. See errata of L 6], J. Appl. Mech. 32E,

219, (1965).
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Assuming elastic fibers and using (3. 7) and the correspondence

principle, (3.6) transforms into

K" = +1 T 1
P23(p) xm(p) % m(p)—i-vf{K

xm(p) +% Fm (p)

Here » (p) and T' (p) are given by (2.28-2.29) or (2.34-2.35), and
m m

(3. 8) then defines the LT of the relaxation modulus K;3 (t).

To simplify (3. 8) let it first be assumed that the matrix is elastic

in dilatation. It is easily shown that in this event

x (p) = KE
m m

where Km is the elastic bulk modulus. A very simple case representing
(2.28-2.29) is a Maxwell model, for which

pT
1+pT

M
' (p) = G
m

where
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(3.9)

(3.10)

(3.11)
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and nrl}f and Ghrf‘ are the viscosity coefficient and shear modulus respective-
ly. |

It is a straight forward matter to insert (3,9-3.11) into (3.8) and to
then find K:§3(t) by the method of partial fractions, but the resulting
expressions are very complicated, Instead, another simplified procedure
will be here used. Because of the considerable stiffness of the fibers
rclative to the matrix, in practice, the former will be assumed to be

perfectly rigid. In that event {3, 6) simplifies to

¥ E E 1 _E E 4 E,_¢
= + = + = .12
K23 Km 3Gm+ (Km _3Gm)1_c (3.12)
where (3.7) has been used, and
v = ¢ v = l-¢ (3.13)

Using the correspondence principle with the general replacement

(2.34-2,35), (3.21) transforms to

A:'_: A 1 oY A 4 A
PK23(P) = PK_(p) + 3 PG, (P) + | PK_(p) + 3 PG (P o (3.14)

which on cancelling the common factor p, immediately yields by

inversion into the time domain
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Ky () =K () +1 G_(t)+[K_(t) +§_ G_ (¢) (3.15)

3

Thus the plane strain effective relaxation modulus is explicitly
expressed for the whole time range in terms of the matrix relaxation
moduli by the same formula as (3.12). Equation (3.15) is a very at-
tractive result since it permits the direct use of measured relaxation
moduli. A similar result has been found in [40] for the three-dimensional
bulk relaxation modulus of a rigid particle suspension, However, no
result similar to (3,15) exists for the effective creep compliance k23

23 by the transform relation (2.21), which

This compliance is related to K
may be inverted into a convolution type Volterra integral equation of the

second kind, which in general must be solved numerically., (Compare

L20] )

To show a simple result for the creep compliance k:3 (t), let it be
assumed that the fibers are rigid and that the matrix is elastic in dila-
tation and viscoelastic in shear according to the simple Maxwell model.
Then to find pK23 (p), replace Gm in (3, 12) by (3.10) while Km remains

unchanged. Then use (2. 24) to find

Y<*3 (p) = 1+ Tp (3. 16)

2 5k
p KE / {1-¢) + TK Ep
m 23
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=E
where K is given by (3. 12). Inversion of (3. 16) yields immediately

23
. 1- N
ko) =28 Ht) + L. 12 |ex {- Km(l-c) t } (3.17)
23 E R E > T
K K K K
m 23 m 23

To provide a check on the general results obtained with use of the Abel-

Tauber theorems it is easily found [rom (3. 17) that

B 1
k. (0) =
23 KyE (3.18)
k::: o _ l _ 3.
23( ) EC (3.19)
K m

Now {3.18) is simply the elastic compliance, whereas (3.19) can be

E
directly found from the reciprocal of (3. 12) by replacing Ky, and Gr]j:n by

E

Km( « ) and Gm( - ), respectively. In the prescent casce Km( ) = K

and for a Maxwell material G( ) =0. Then, (3.19) follows immediately.
Finally, the Abel-Tauber theorems will be applied in the case where

the fibers are not assumed rigid. The initial value K:;::,(O) is simply

given by replacement of the matrix moduli in (3, 6) by the corresponding

initial viscoelastic relaxation moduli. To obtain a simplified expression

for K:§3( = ) let it be assumed that the matrix is elastic in dilatation.

Furthermore, for many materials the relaxation moduli reduce to a small

T1



fraction of their initial values, after long time. Accordingly, Gm("“)
will be neglected in (3. 6) in comparison to other moduli. Under these

circumstances the following result is easily found

E
£
me

"f (1-c) + cK
m

4. AXIAL SHEAR

Let the fiber reinforced specimen be subjected to the average shear

strains
€ =€ =
2 (=€ () =o
and all other average strain components vanish. The system (4.1) is a
shearing action on planes normal and parallel to the fibers. The trans-

formed effective stress-strain relation is given by (2.14) or (2.15) which

becomes in the time domain

s (t)

t sk
2y G (t-1) dAT) 47
o 1 dr

where

1

s (t) olz(t) = o__(t)

21

and all other average stresses vanish, Dually, the specimen may be

subjected to the average stress system (4. 3), the resulting average strains

being (4.1) and the effective creep type stress-strain relation is then

T2

(3.20)

(4.1)

(4.2)

(4. 3)



1Y ooy ds(T)
a(t) =, 8 (t - 1) Td'r (4. 4)

The quantities G1

and g;: are the effective axial shear reclaxation modulus

and creep compliance, respectively, and are related by (2.23).

£
For an clastic composite cylinder assemblage the expression for G1
obtaincd by Hashin and Rosen, 6 (Equation 71 for solid libers) may be
rewritten as follows:
; E
i G, (l+c)+ G 1-
GE_ G llvra+Gil-a . 5)

1 m

Gy (1-c)+ GE (14 ¢)
m

where ¢ is the fractional volume of fibers. This is a particularly simple

cxpression since only the phase shear moduli are involved.

Let it first be assumed that the fibers are elastic and that the matrix
is represented by a Maxwell model. Note that it does not matter in this
casc whether or not the matrix exhibits volume viscoelasticity. As an
example the creep compliance g::(t) will be calculated. Using the corres-
pondence rule (2.29), with (3.10) and (2.23), a straightforward calculation

yiclds

L 1+Tp Gy (l—c)+|:Gf(1—c)+Grll\_lA(l+ c] (4. 6)
G, Tp? Gf(1+ c)+[Gf (1+ c)+G1\rﬁ(1-cﬂ

Inverting by partial fractions,

M 1 4c
G (ty = =€ H(t) + t |+ ————5—H(t
m o1 i+ c = o araq (t)

(4.7)
4(l~-c)c

W+ o)’ dpi+ o) +1-c]

exp{-

$(1+ c) t_}
p{t+c)+1-c T

T3




where

It is seen that the first term in the right side of (4.7) does not contain ¢,
the second is of order c)-l, and the third of order ¢-2. For fibers which
are much stiffer than the matrix ¢is large. Hence in that case the third
or both the second and third terms can be neglected in comparison to the
first., For thre ¢ usually encountered in practice retainment of the first
term only, involves but a few percent error. It is seen that the first
term is the exact solution for ¢-'°°, i.e., rigid fibers. Because of the
linear term in t, the creep compliance becomes unbounded for infinite

time.

A very simple result is obtained if it is assumed at the outset that

the fibers are rigid. The elastic result (4. 5) then reduces to

G*E= 1+ c¢ GE
1 1-c m

whence, by the correspondence rule (2.41)

pGT (p) = -if—‘;-— pG L (p)

T

(4.8)

(4.9)

(4.10)



which on cancelling p directly inverts into
G, (t) = }Jr—c G__ (1) (4.11)

Thus, the relaxation modulus of the fiber reinforced material is merely
the relaxation modulus of the matrix multiplied by i“"—c * A similar
-c

result can be obtained for the creep compliance, for it follows from {2.23)

and an analogous relation for pé (p) and pém(p), that
m

= e 5 (4.12)
pg, (p) -c pe P
where §m (p) is the LT of the matrix creep compliance. Again (4. 12) can

be dircctly inverted to yield

g =_1l-¢c 4 () (4.13)
1 l1+c¢ m

Note as a check that the [irst part of the right side of (4. 7) could have

been directly deduced from (4.13), since the former is the creep compliance

of the Maxwell matrix multiplied by the factor l-c¢ . Equations (4.11)
i1+c

and (4.13) are particularly useful results since they permit simple, direct

determination of viscoelastic creep and relaxation functions on the basis

of measured matrix behavior.

To illustrate the use of the Abel-Tauber theorems, G{ (<) will be calcu-

lated from (4.5). The result is

& (o) - Ge(l+¢c)+ G (=) {1-c)

1 Gm(m) (4.14)

Gf(l-c)+Gm(°°) 1+ ¢)

(£



Even if G (0) is of the order of magnitude of Gf, usually a relaxation
m

modulus decreases att = ® to a small fraction of its initial value, so

that the rigid fiber approximation becomes applicable to (4.14) whence

it reduces with sufficient accuracy to

G (2 _ltc g (=) (4.15)

1 1-c¢ m

which is of course in accordance with (4.11). Similarly, by the same

reasoning

B 1- 1
g (®}= <

1 1+ ¢ G (x)
m

(4.16)

which is in accordance with (4.13). Thus, in general, if G () goes to
m

zero, gm {=) becomes unbounded. The important point to remember is

that (4.15-4.16) will hold even if fibers and matrix are initially of com-

parable stiffness.

5. UNIAXIAL STRESS IN FIBER DIRECTION

The fiber reinforced specimen is first subjected to uniaxial average

strain
Gll (t) = €(t) {(5.1)

while the lateral surface is free of load. Then

LA (t) = 13 (t)y =0 (5.2)
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and all average shear strains and shear stresses vanish. The relation

between axial average stress and strain is then given by

- £ % =
G () =o(t)=, E (-7 20 (5. 3)
1 o 1 dr

where E1 is the axial Young's relaxation modulus.
If instead of (5.1) the specimen is subjected to average axial stress
o, (©) = o (t) (5. 4)
while (5.2) continues to hold, then the axial average strain is given by

- — t A =
611 (t) = € (t) = JO el (t - T) _'—d Udfr"r)' d

where e

1 is the axial Young's creep compliance. The functions E. and

e1 are related by (2.24).

An expression for the effective Young's modulus ElE of the composite
cylinder assemblage has been given by Hashin'and Rosen [6]. Hill [ 15
has given an equivalent expression LEquation (3.9)] which is of much
simpler algebraic form. Therefore the latter form will be here used. In

the present notation this expression can be written as

(5. 6)

E .
where & is the elastic plane strain bulk modulus defined by (3.7). It

7



should be noted that simplification to rigid fibers is not permitted here,

since this would result in infinite effective Young's modulus.

Application of the correspondence rules to find E1 (t) from (5. 6),
although straightforward, involves very heavy calculations, even for a
simple Maxwell matrix. Therefore such derivations will not be given
here. Equation (5. 6) will only be used to find E{ (o) and E; (<) by the
Abel-Tauber theorems and as will be seen from the results calculation
of E* (t) for the full time range is hardly needed for fiber reinforced

materials used in practice.

The initial relaxation modulus E1 (o) is simply given by inserting
in (5. 6) the initial phase relaxation moduli. The third term in (5. 6)
is negligible in most cases, and thus

E (0)=v E + v E
1(o) vn’1 m(O) vf ¢

A sample calculation for a typical fiber reinforced material with

E (o) = 0.5 x 106 psi E =10.5 x 106 psi
m f

Vm(o):0.35 vf=0.20

Vin =0.3 vf=0 7

shows that the error due to this approximation is 0,013% of (5. 7).
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Generally in fiber reinforced materials

E << E v _=0(v)
m £ m f

In this case the first term in the right side of (5.7) can also be

neglected, and then

E (o) Sv E
1 £f

(5.8)
Turning now to t = ®, it is seen that the dominant term in (5, 6) is
the middle one since all matrix relaxation moduli become less than
their initial values. Thus to a better approximation than (5. 8)
E' (=) 5v E 5.9
. (=) £ B (5.9)
Assuming that E (t) is monotonic it is seen that the viscoelastic effect
1
is negligible and El (t) is practically constant.
By the same reasoning the creep compliance eﬂ: is practically con-
stant for the whole time range and is given by
et 1
1 ve Ef (5.10)

To define an axial Poisson's ratio v (t) assume that the average applied
1

axial stress (5.4) has the form

19



T (t) = 0" H () (5.11)

while (5.2) continues to hold. The average strains produced are

then (5.1) and

€ (t)=¢€ (t)=¢€ (1) (5.12)
22 33 s

Then vl (t) is defined by

V () = - _€s (1) (5.13)
1 € (t)
It should be noted that 1{ (t) cannot be found from an expression for
an elastic Poisson's ratio, by the correspondence rules, since it is not
a constant which relates stress to strain. To compute ul (t), €(t) and
€ (t) have first to be calculated. Introducing the transforms of the
s
present average stresses and strains into (2.11-13) and solving for the
transformed strains, there follows
K33 (p)
= ° pt23 P
pe(p) = © — (5.14)
Zé,,‘ A ZC,,.Z
P oy By “P &2
o P é
- 12
p€ (p) = 0 St o
s » Zé b k-r Zé* 2 (5'15)
P 11 23 p 12

The TD moduli entering into the right sides of (5.14 - 15) are determined

from their elastic counterparts by the correspondence rules, whence result



the transforms of the average strains which now have to be inverted

to the time domain. Note that (5.14) defines the TD axial Young's
modulus which has already been discussed. The inversion being in
general very complicated, attention will again be directed to evaluation
at times o, ©» by the Abel-Tauber theorems. Application of these

theorems immediately shows that

€ (o) c *

Vl (o) = - s = — 12::: ©)

S fa L Gl

! T (=) 2K, 4 (%)
:::E

Recalling that the elastic Poisson's ratio Y is given by (see L2 1)

. C:::E
'i. e - E
2K
23

it is concluded that V; (o) and Ul (*) can simply be calculated from
TR
v by replacement of the elastic moduli by the initial and final values

1

of the relaxation moduli, respectively.

*E
An expression foer of a cylinder assemblage has been given in

[6] and an equivalent expression of simpler form in [15]. The last

expression is

B E E E E E E
V. =v_V +vfl/ + v vf(l/f -Vm)(l/ﬁm_l/ﬁf)

E E E
v [ & +v & +1/G
m £ f m m
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To find Ul:s (o) and U;: (=) it is necessary to replace the elastic moduli
in (5.19) by the initial and final values of the relaxation moduli. Note in

this respect that v (o) and v (®) have to be interpreted as

m m
G
v (o):% 1. _Sml (5.20)
m 'ﬁ.m(o)
G (%)
vy (e =Llfl-—m— (5.21)
m 2 ko (=)

Considerable simplification is achieved if it is assumed that the matrix

is incompressible and that G (®) can be neglected relative to fiber moduli.
m

Then

v + Vv (5.22)

6. TRANSVERSE SHEAR

When the fiber reinforced specimen is subjected to the average shear

. strain

i = =& (6.1)

and all other average strains vanish, the resulting average stresses are

0,y (1) = 532 (t) = s (6.2)
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and all others vanish. The stress is given by

t .
(=2 [ G, (c-1) dUT)

If, on the other hand, (6.2) is prescribed, the strain is given by

aly =L o7 (op ds(D
ZIOIZZ3 (1-7) I aT

The cffective transverse shear rcelaxation modulus and creep compliance,

G:;?) and g;3’ arc related by (2. 22).

Unfortunately an expression for Ga}i: of an elastic composite cylinder
assemblage is not known. In the treatment given in L6, this modulus
vould only be bounded from above and below. It is at present not
known how to establish such bounds for visco-elastic fiber rcinforced

materials for the whole time range.

It has, however, been shown by Schulgasser {43, on thce basis of
the Abel-Tauber theorems, that elasticity bounds on effcctive moduli
can be transcribed into Lounds on visco-elastic effective rclaxation
moduli at times zero and infinity, simply by replacement of phase

elastic moduli in the bound expressions, by initial and ultimate values

of the phase relaxation moduli. Consequently the bounds on G2 ,

*E BS
obtained in L& J, can be used to find bounds on G23 (o) and G23 (=)

of a composite cylinder assemblage.
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If results for intermediate times are needed, the following observation
may be ot some value. It has been shown in (14 ]Jthat a lower bound for
*E . . .
G23 of a fiber reinforced material, with arbitrary fiber shapes, is

given by the expression

L E Vf
G = G+
37 m 1 (e 1265 ) v
m m
GE _ GF 26E (¢ E 4+ GE)
f m m M m

It may be shown that (6. 5) is always between the bounds for G"‘E
23
of a cylinder assemblage which have been derived in [6]. Further-

more, for v, very close to zero or very close to unity, these bounds

f
coincide and reduce to (6.5). Therefore, if the bounds for the elastic
case are reasonably close, there may be some merit in replacing the
phase moduli in (6.5) by TD phase moduli and inverting into the time

domain. It may then be hoped that the resulting expression will give

G=‘_=Z3(t) of a composite cylinder assemblage, approximately.

7. APPLICATION OF RESULTS

As an example of the application of the results of this study, the time
dependent properties of a Maxwell body will be treated. For this ma-

terial the stress-strain relations are of the form:

ij =
J 2G 21 (7.1)

8L

(6.5)

fer



.The relaxation modulus is defined as the stress associated with a

constant unit strain. Thus:

eij (t) =1
eij (ty = 0
S. . S..
. 1 1]
S 2 -0 (7.2)
2G 2n

The solution to this equation is:

s . = Ce-t/T
1]
(7. 3)
T
where T = el
Since
E
01_] (O) = 2G eij (O)
E .
s, = 2G e v
1j
And the relaxation modulus, G(t), is given by:
E -t/T
G(t) =G e (7. 4)

In particular, the plane strain bulk modulus, K*Z3(t), for a composite of
rigid fibers is given by eq. (3.15). The matrix will be assumed elastic in

dilation. Thus:

~
3

Km(t) (7.5)
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From (7. 4): G (1) = G_ e-t/r (7. 6)

Substitution of egs. {7.5) and (7. 6) into (3. 15) yields:

E
K£3(t) 1 (1 + 3c) Gm —t/r
= + e
KE l-c 1-c Kk (7.7)
m m
GE 3 2V
where m _ (1- m)
—_— =
K 2(1+ v )
m m

The normalized plane strain bulk modulus is presented as a function
of the non-dimensional time parameter in fig, 27 for several values of c.

The lowest curve represents an unreinforced matrix.

Similarly, the relaxation modulus for shear in a fiber plane, G-'l-':-(t)

is given by eq. (4.11). Thus from eqs. (7.4) and (4. 11):

G:::
18 e o-t/T (7.8)
E -

Gm 1-c

Results for the same values of ¢ used previously are presented in fig. 28

Another example of the application of this viscoelastic analysis is ob-

tained by evaluating the creep compliance, For this case we consider

the strain associated with the stresses:



.and from eq. 7.1:

1
€ t) = ——
iy ®° 3m
»Soe.. (t) = _t y C
1) 2M
s..
ei' (0) = 1.] (0) = 1
! 2GE 2GE
i
t —_
2 t T ——_—
ST 21, ' 2cE
1 t
or eij (t) o ZGE (—T+ 1)

The creep compliance, g(t) is thus:

g(t) = gE(%Jr 1)

(7.9)

(7. 10)

The creep compliance, k;3 for rigid fibers is given by {(3.17). Thus

k-:I: ¢ K*
_23_(_)_ = (l-c) H (1) +I T
(1/K5 By F23

It can be shown (ref. 6) that for this case

k,y | 3Bzewv )
=% =
K 2(1-c)(1+um)

Substituting eq. (7.12) into (7. 11) yields:
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K (l-c)

m

Kas3

-(l-c) ] exp { -

t

T

(7.12)

(7.
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K,y (8) 3 [2(1+vm) 2(1-0)%(1v ) ¢
————— = (1-c){H (t) +y — - ljexpf - - {7.13)

* E 3(1+2c v y -
(/K ( ) 3(1+2e V)

A simple illustration is obtained for the case V = o0, namely;
m

(7.14)

S
[ |

' 1
—_Z—?)—_E = (1—C)§H (t) -E exp[—% (1-C)2

Eq. (7.14) is plotted in fig. 29.

The creep compliance in shear,g;k (t) is given by eq. (4. 13), which

with the aid of eq. (7.10) yields:

= & +t b (7. 15)

These results are presented in fig. 30,

8. CONCLUSIONS

The analysis given here may be regarded as a first step in the theore-
tical evaluation of the viscoelastic properties of fiber reinforced materials
in terms of phase properties. It should be remembered that the composite
cylinder assemblage model is only a geometrical idealization of a real fiber

reinforced material.
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In the elastic case the results obtained on the basis of this
model were in many cases close to experimental results. It may
therefore be hoped that the viscoélastic results will exhibit similar
fecatures. To the author's knowledge, systematic experimental
investigation of the viscoclastic properties of fiber reinforced

materials has not Leen performed.
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THREE-DIMENSIONAL REINFORCEMENT

Filamentary reinforcement of composites has generally been of two-
dimensional character. That is, the filaments are usually disposed to
provide reinforcement in the plane of a plate-like composite, or around the
circumference of a shell, for example. Reinforcements through the thick-
ness of plates and shells have not often been attempted. Thus the composites

have most often had a laminate-like structure, similar to plywood.

Lack of reinforcement through the thickness, while leading to simplifi-
cations in both composite fabrication and analysis also introduces undesirable
planes of weakness in the material. Probably mis-named "interlaminar
shear' failures have been encountered in compression; ''shredding"
failures of hoop-wound pressure vessels have occurred in tension
and both analytical and experimental models (Ref. 11) have supported
the desirability of added reinforcement in the thickness direction for thin-

walled as well as thick composites.

In this section of this report analytical procedures are developed for the
evaluation of the elastic constants of filamentary composites having three-
dimensional reinforcements. Formulas for these constants are derived for
orthogonal filaments, and for skewed filaments having symmetries about
three orthogonal axes. In the derivations some symplifying assumptions

are employed; these assumptions (or the symmetries considered) are not



essential to the development, -their importance will be discussed and
directions for more rigorous and general eitensions will be given., The
formulas derived, however, cncompass a wide new range of reinforcement
possibilities, and they will be employed in the evaluation of somec of the
potentialities accessible through the use of a three-dimensional reinforcing

system.

Analytical Approach

The approach used for the three-dimensional analysis relatcs to that
followed in Referencc 14to determine the properties of integrally stiffened
plates. Therein the reinforcement provided by integral stiffening is evalu-
ated as fully effective in the direction of the stiffening but reduced in
stretching effectiveness transverse to the stiffening by a factor ﬂ Simi-
larly the transverse shearing effectiveness is evaluated as reduced, - in
this case by a different factor pl. With the longitudingl and transversc
clfectivenesses established, the remainder of the analysis is a straight-
forward elasticity problem of trigonometric resolution and summation of

stiffnesses to yield the desired elastic constants.

The basis for the extension of the integral stiffening analysis to fila-
mentary composites is illustrated schematically in Figure 31, In this figure
the portion of the binder material betweeh filaments in a uni-directionally
reinforced filamentary composite is shown to be similar to the skin and inte-

gral ribbing of integrally stiffened plates. Neglecting the filaments (i.e.,
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treating them for the moment as holes) the stiffness of such a two-

dimensional array may be written according to the analysis of Reference 44

()%

either as

A
% W,

_S 1]
£ /-v? 7% by 7

(26)
S A“&
/-v /g

or converting to the nomenclature for composites

(75)
£7o- =Eb m.ﬁ( b) /_:,:;2 —//—Vb) (29)

In these equations
£7- stiffness transverse to round holes in binder
o
Eb Young's modulus of binder material

""skin thickness'" - thickness of straight ele-

ments of binder (if any) between holes

v Poisson's ratio

@L transverse effectiveness ofd -shaped material
between holes in binder

A” cross-sectional area of L -shaped material between
holes

bx hole spacing

transverse effectiveness lost by making holes in
-0

binder

Vb volume fraction of binder material
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The next step is evidently to fill the holes with filaments to yield

an equation for the two-dimensional composite as follows:

(=)
E. Esfi- o‘ —ﬂ.//-vb) 'ﬂ(l Vb}Eb .'__ - (i~ %) Y

where for simplicity the Poisson's ratios of filaments and binder have been

2

assumed equal;ﬁ. represents the transverse effectiveness of the filament,

and E

_is the Young's modulus of the filamentary material,
t

Extcnsion of this type of analysis to three dimension and for appli-

cation to filaments and binders of different Poisson's ratios is discussed in

the following sections.

Equations for Elastic Constants

General Equations - The elastic constants evaluated in the three-

dimensional analysis are those applicable to an orthotropic composite having
reinforcements symmetrically disposed about the three principal axes at plus
and minus the angles indicated in Figure 32. For such a composite there are

nine elastic constants defined by the following equations:

= A + A + A
0’1 lel 2‘2 363

0,= 4,6 +A, € +a, 6

a?: A3 £1+A5 eZ+A6 63 (31)
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2 7 (s1)
Cont'd.
T -A
23~ %8 %23
= A
T3 = %9 "5

where

Il OZ’ 03 direct stresses in the 1-, 2~, and 3-directions

1!
“ r«é, €3 direct strains in the l-, 2-, and 3-~directions
le, T23, T13 shear stresses in the 1-2, 2-3, and 1-3 planes

.712’ 723, y13 shear strains in the 1-2, 2-3, and 1-3 planes

and the A's are the elastic constants given by the equations in the following
section. These constants are related to the conventional stretching and

. . : '
shearing stiffnesses El’ EZ, and E3, GlZ’ GZ3’ and G13, and Poisson's

ratios VZI' vV__, and V__, by the following equations:

32 31

2 2
A -A A A A A -
E =A - ZA() 2 35 _ 3 4 AZALAS
1 o A Al —
4 2685 Aghg-Ag
(32)
2 2
E, - A, A Ag - Ay, Ag Ay A AT - A A AL
2 Z
-A -
Ay Aghy Aphg Ay
A°A -A_A. A A A°_A A A
E,=A, - 3 4 27375 175 772 5
3 32 2
A A - AL A A, - AL
vy = A, Ay -A34g
1 2
A1Ae'A3

9k



Vv = 15 2 3
32 AA - A°
1 4 2
L L AgA - AJAL
31
AA -A
1 4
G12=A7
= A
G&3 8
- A
Gy, 9

General equations like (31) and (32) may be found in the literaturc of
three-dimensional elasticity for application to any orthotropic solid with
the specified symmetries (so that couplings among shears and displace-
ments are avoided). The evaluation of the constants employed in these
equations for filamentary composites, however, involves less standard
procedures. These special characteristics are discussed and illustrated

for specific cases in the following sections.

Derivations - The elastic constants for the three-dimensionally rein-
forced composites are derived by partial differentiations of the general
expression for the strain energy of a repeating rectangular element b1
by b2 by b3 of the composite., This derivation is analogous to that in
Reference 44 for integrally-stiffened plates with the following differences:

(1) It is a three-dimensional rather than a two-dimensional analysis.
(2) Properties of binder and filaments are different, whereas ribs

and skin in Reference 44 were of the same material.
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(3) Only extension and shearing are considered. Reference 44
also evaluated bending and twisting stiffnesses. Thus the
implicit assumption is made that the composite is homo-
geneous, and bending and twisting stiffnesses can be evalu-
ated in terms of the stretching and shearing constants. Non-
homogeneities through the thickness direction could be readily
taken into account, if desired, with a re-derivation extended
in further analogy to the waffle-stiffening of Reference 44,
Non-homogeneities in the other two directions, however,
would require such major modifications that they can hardly

be considered in terms of the present analysis.

The general expressions for the strain energy of stretching of a composite

subjected to the strains €1, 62, and €3, may be written as follows:
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where

Subscripts

strain energy of distortion
Young's modulus

shear modulus

Poisson's ratio
extensional strain

shear strain

volume fraction

filament
binder
3, s=1-, 2-, 3-, skew directions

along skew direction

transverse to skew direction
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Evident in the foregoing expression are the various '0 's repre-
sentative of the transverse effectivenesses of the filaments and binder
clements among filaments. I'or simple cxtension, such that the energy

is mecasured by an expression of the form

/ Ef (’ -%)

(/-rv;[ Zv) (ﬂ. &;ck/é’z)a'(n)

for example, the analogy between thep's of Reference 44 and those used

hercin is complete. For Poisson extensions of the form

b

however, the physical mogdel of reduced effectiveness is somewhat different,
and strictly speaking a different effectiveness factor, as (ﬁ.+ é } should
perhaps be employed. For simplicity herein such a refinement is not con-
sidered. In consequence slight errors are introduced which show up pri-
marily as slightly high calculated values of E1 for uni-directionally rein-
forced (in the l-direction) composites. Inasmuch as this E1 is the most
easily calculated of all the constants, via the rule of mixtures, so it can

be readily corrected, if desired, and since the other values of stiffnesses
appear accurately calculated (+5%) with one/3 for direct and for Poisson

strains, only oneﬁ is used in the following development.
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(The use of a single transverse effectiveness factor also affects the
values of Poisson's ratios calculated by this analysis. It will be shown
later that expressions may be derived for the adjustment of the ﬂ—value
for a more precise description of the transverse effectiveness. For most

purposes, however, such an adjustments appears unwarranted. )

In order to evaluate the strain energy as given in Equation (35) ex-

/3

distortions €l, 62, and€3. These expressions are:

pressions are required for %, J‘;[. , etc. in terms of the imposed
(]

(1) The strain along a skew filament

€ = 6 cos’d + & cos’Y + ¢, costAd (36)

(2) The strain perpendicular to a skew filament and in the plane of

the filament and the l-axis

5"'7 = ¢ om’d + 6 cos¥y cot’d » €, cos’ N cor¥g (37)
!

(3) The strain perpendicular to € and €
6‘ 6‘7;

cos’ (L cos?y
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Similar expressions can be written for the orthogonal shearing

strains as:

X}_r = 2/5, .s:'n¢m¢ -6 cotd co.s‘;‘ - £ cot ¢ cos ‘Il/ (39)
/

cos {1 cos % cos L (20)
=2 & ; - € :
s on @ J e ¢
‘%

coso cosf cos®w cos {1 (41)
l =2/;z cot ¢ -—;{%— -%corﬁ Cosp cos {1

T esmf

Substituting Equations { 36 ) - { 41 )} in Equation ( 33), integrating and

simplifying, yields -
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Differentiating successively with respectto £ , € , and (3, and
1 2

+E€6 v %Lt pe, _ _vibap., L )

(42)
Conc.

+ ‘)’1 Ef,! ) vb E& -0

{/f%[/-l#(,) - [l.w;,Y/—Zv‘) [‘g)

collecting the factors of each of these strains for each partial derivative

yields the desired elastic constants, as follows:

4
9 b,%)

de

1

= g

as beiore

G =A ¢ *Az € + A
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The elastic constants for shearing are found in a similar fashion

to those for stretching. Shears Y }/23, and ]13 are imposed

12°

and the strain energy is evaluated as
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Substituting ( 59 ) - ( 55 ) in (49 ), carrying out the integrations

and differentiations, etc. yields
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Evaluation of 's - Equations relating the stiffnesses of uni-directionally
T .

. . . - ! ~
reinforced composites to the effectiveness coefficients p , {J , and F may be
readily derived as special cases of the general cquations developed in the
prceceding section. For the three-dimensional case, with the Poisson's ratio

of the filaments "f not equal to those of the binder, these equations are:
//..ﬂ.yf):‘-'[—';—;?);zf(lnb) ]—%ﬁ;’é //w,)-{ 0( Il/blpw/?e. (59)
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l{‘ = volume fraction of filaments

Poisson's ratio of filaments

£

6/! = shear stiffncss of binder having uni-directional round holes,
o in the plane of the holes

623 = shear stiffness of binder having uni-directional round holes,
(-}

transverse to the holes

Other symbols as before.

In essence equations (59) - (64) define factors (p) for transverse effective-
ness for use in multi-directional reinforcement patterns - in terms of uni-
directional reinforcement. Accordingly, any available data on the transverse
effectiveness of unidirectional filamentary reinforcement may be employed via
these cquations, and those of the preceding section for multi-directional con-

figurations.

In order to obtain values of the /3 's for use in the present evaluations of
approaches to improvements in properties, the upper bounds of the elastic
constant analysis of Reference 6 were used to yield values of {J . Typical

results are plotted in Figure 33,

From Equations (59)-(64) above the related equations of Ref. 6, and in

Figure 33 the following characteristics of the’, 's are evident:
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(1) The values ofﬁ., ﬂ:, andf:a.re independent of the filament
”
properties;ﬂ.’depends only upon lz , andﬂ.and/.?. depend upon Vb

and \’b .

! "
(2) Values ofﬂ., /3. , and/’. are not greatly different one from

:
another (c.f. Ref.#in whichﬁ was suggested to be approxi-
mately 8/7,0 ). That is, the transverse effectivenesses as

represented by the/) -values are slightly - but not substantially -

different for stretching and shearing.

Values of,"s calculated using the upper bounds of Reference 6 will be
employed in the following section to measure the merits of various rein-

forcement configurations.
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Evaluations of Various Reinforcement Configurations

In order to illustrate the application of the equations derived in the fore-
going sections to specific configurations of fibrous reinforcement, a number
of examples will be evaluated, as follows:

(1} Elastic constant for uni-directional and for simple 2-dimensional
reinforcement configurations will be computed by the three-
dimensional analysis and compared with previous ''laminate'’
analyses to indicate the accuracy obtainable.

(2) Uni-directional triangular cross-section filaments will be
considered.

(3) Orthogonal elliptical filaments aligned in the 1- and 2 - directions
and having all the minor axes of the elliptical cross-sections in
the 3-direction will be evaluated.

(4) Three-dimensional reinforcement patterns will be evaluated.

The equations for the elastic constants for these four cases are given in

Tables 6 - 13.

Two-Dimensional Uni-Directional Reinforcement - The initial application

of the equations derived in the previous section that will be reported covers
two-dimensional reinforcement in various configurations, for comparisons
with previous results obtained for quasi-homogeneous laminate constructions.
First simple, uni-directional reinforcement will be considered to show the
magnitudes of possible differences from other methods of calculation intro-

duced by the approximations associated with the transverse P-factors of the
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present analysis, Also possible improvements associated with refined
transverse factors will be discussed. Second, reinforcements at angles
of ie degrees to the l-direction, orthogonal filaments in the 1- and 2-
directions, and the 2 -dimensionally -isotropic (i30°, 900) delta rein-
forcement pattern will be evaluated and compared to previous calcu-
lations. The reduced elastic constant equations derived from the general
equations - that apply to these four reinforcement patterns are given in

Tables 6 - 9.

For uni-directional reinforcement the present analysis naturally forces
agreement in calculated elastic constants with other analyses for those
constants which are direct functions of the p -values if theP-values them-
selves are based on the other analyses. Thus values of Ez, E3, GlZ’ G23,
and G13 found from the equations of Table 1 must agree with the corresponding
values from whatever source was used to determine the (3'5. Values of the
stiffness along the reinforcement direction El, and of the three Poisson's
ratios 021, \)32, and J31, however, do not follow this forced correspondence.
Generally the values of El calculated from Table 1 are higher than from other

approaches (or the rule of mixtures), and the Poisson's ratio values are

lower. Typical differences are plotted in Figure 34,

That E for uni-directional filaments in the l-direction should correspond
to the "rule-of-mixtures' value (see Fig.34) has been generally accepted and

indeed such correspondence appears conceptually satisfactory. The physical
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concept of a ""rule-of-mixtures'' applying to the Poisson's ratio \)21,
however, is perhaps not as satisfying, nor is it supported by other
analyses. The fact that the Hashin-Rosen values on the Figure are so
close to the ''rule-of-mixtures'' line, for example, is just a coincidence
for this particular combination of constituents; for epoxy filaments in
glass binder, the corresponding Hashin-Rosen curve for \721 is essentially

identical to that plotted for P :P upper In any event, the major

bound,
discrepancy appears in the calculation of E1 via the present analysis

(circa 10% maximum difference between the calculation and the '""rule-of-
mixtures'' value for uni-directional reinforcement; as will be shown, for

all other reinforcement patterns the present analysis is in closer agree-

ment with accepted calculations for E1 as well as the other stiffnesses),

Refined Equations for Uni-directional Reinforcement. - A likely source

of the above discrepancy is the use of a single value ofP to apply to the
transverse effectiveness for strains introduced by Poisson's ratio effects,
as noted in the section describing the derivation of the equations for elas-
tic constants. A more refined analysis could be developed, for example,
which would result in equations of the nature given in Table 14 for uni-
directional reinforcement. The evaluation of the additional parameters

in a set of equations like those in Table 14 can be made through the imposi-

tion of additional conditions to be simultaneously satisfied, such as, that

A.f =44/ "2A8 (69)
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(because of the transverse isotropy of uni-directional reinforcement)
and that

EIZEfo+Eb (1-Vf) (70)

or by the direct evaluation of A, AZ’ etc. in terms of the Hashin-Rosen

constants as by the equations of Table [5.

For most purposes refined equations of the nature of those in Table 14
do not appear justified. As will be shown the accuracy of the simpler
equations developed here should be adequate for most reinforcement pat-
terns, as judged by the following comparisons with available, 2-dimensional

laminate analyses.
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Two-Dimensional, Multi-Directional Reinforcement - If the rein-

forcing filaments are disposed at right angles to each other but still
essentially in a single plane, two possible approaches suggest themselves
for the calculation of the elastic constants using the equations in Table 7.

In the first approach the@ -values corresponding to the total volume con-
centration of filaments is used, as if the filaments were packed in individual,
uni-directionally reinforced laminae each of which had the volume fraction
packing of the laminate as a whole. In the second approach the p—values for
the lesser volume fractions corresponding to the fraction of filaments in
each direction are used, as if the filaments were truly mixed in a given
plane. Thus two slightly different results are obtainable for the elastic

constants, as shown in Figure 35,

As shown in Figure 35 the values of E1 calculated by the present analysis
are slightly greater than those found from conventional laminate analysis.
The differences are less than for the uni-directional case, decreasing from
the maximum discrepancy at 0% filaments in the 2-direction to zero difference
at 100% transverse reinforcement. (The case chosen for comparison - that
i5:50% volume fraction with very different filament and binder materials,was
specifically selected to bring out the differences in results associated with the
P -value approximations, For filaments having Poisson's ratios and stiffnesses
less different from those of the binder than this example, and for higher volume

fractions of reinforcement, the Present analyses may be expected to correspond
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more closely to laminate analyses.)

For reinforcements running in one plane at angles of ia to the 1-
direction the correspondence between the present and laminate analyses
is similar to that for orthogonal filaments. Thus as shown in Figure 36
the results of present and past analyses rapidly approach each other as

@ diverges from zero degrees.

One more comparison will be made of two-dimensional calculations
before passing to the investigations of three-dimensional effects that the
new analysis facilitates. This last comparison (Figure 37) shows values
of El for the + 30° & 90° configuration that provides in-plane isotropy.
Agreement between laminate and present analysis is shown generally
satisfactory. An additional comforting result not shown on the figure, or
obvious from the pertinent equations (Table 9 ), is that, as it should, for

the present analysis of this configuration

E
G = 1 (71)

12
2(1+v
( 21)

at least to four decimal places.

Triangular Filaments - As a first application of the three-dimensional

analysis to the evaluation of reinforcements which affect the stiffnesses in
all directions, let us consider filaments having an equilateral-triangle cross-
section, This shape is of especial interest because, with ideal packing it

permits straight-line binder elements among the filaments (Figure 38).
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In the limit, the configuration shown in Figure 38 is akin to those
for which the waffle-type analysis was originated. That is, the material
between the triangular filaments is effective along the straight-line elements
as well as transverse to them; the components of stiffnesses both along and
transverse to each binder element thus contribute to the overall stiffness,

as described by the equations of Table 1Q

The ratio of transverse stiffnesses produced by straight-line continuous
binder elements of Figure 38(as represented by the equations of Table 10) to
the transverse stiffnesses of the usual discontinuous binder are plotted in
Figure 35 as representing triangular glass filaments in epoxy. More precisely,
the transverse stiffnesses of the two models shown in Figurc 38 are those com-
pared in Figure 39, That is the stiffness of a composite of epoxy filaments
oriented in a delta configuration in a glass matrix is compared with that of
a dispersion of rounds transverse to the direction in which the stiffness is
calculated. The stiffness of the oriented epoxy filaments was evaluated via
the equations of Table 6 withp-values corresponding to the random-array
upper bounds of Ref. 6. The transverse stiffness of the dispersed rounds
was found directly as the random-array upper bounds of Ref. 6. Accordingly
the difference in stiffness between the two models is just that arising along

the oriented, straight-line elements found among the equilateral triangles.

Although the gains in transverse stiffness for the triangular filaments

‘'shown in Figure 39are only 20-25% in the volume fraction range of greatest
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interest (wa 0. 33), two factors tend to multiply the importance of this
improvement. First the gain is bi-directional - i.e. if the triangular

filaments are oriented in the l-direction both EZ and E3 are equally en-
hanced. Second, the fact that the percent gain is greater at the higher

volume fractions of binder suggest that as the binder properties become
more significant (hence for better binders than epoxy) the improvement
may be more significant. The value of enhancement of E3 as well as E

2

will be discussed further in other sections of this report,

Elliptical Filaments - It was first shown in Ref. 2 and has been now

thoroughly confirmed by the data herein that elliptical filaments can sub-
stantially increase the transverse properties in the direction of the ellipse
major axis. In order to determine just how valuable such an increase is,
however, a quantitative study is required of various approaches which are
capable of affecting the same increase. Accordingly, ‘he waffle-type

analysis is here applied to the evaluation of elliptical filaments.

As a first example, let us compare the nroperties of round and elliptical-
filament reinforced composites having comparable amounts of orthogonal
reinforcement to provide biaxial stiffness. The comparison is made in

Figure 40,
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In Figure 40the stretching stiffness in the l-direction (El) is plotted
against the percentage of reinforcement oriented transversely, In all
cases the total amount of reinforcement {i.e. the sum of the reinforce-
ments in the two directions) is held constant at 50% by volume of the
composite. The values plotted were calculated from the equations of

Table 11 and 7 £
and [ 2ox E, = 72.45 GN/m?

L0, 500, 000 psi,) \Jf =0.2
= 3,45 GN/mZ

(500, 000 psi,) Vb = 0.35

Ey

that is for properties representative of E-glass filaments in epoxy binder.

Two curves are given for both the round and elliptical filaments,
representing the two possible P -values as discussed for Figure 35, Dif-
ferences between the upper and lower curves are small, as can be seen.
The F—values for the round filaments are those plotted in Figure 33, Those
for the ellipses were calculated to make E1 = ZEl for 100% of the reinforce-
ment in the 2-direction as appropriate for 4'to 1 aspect ratio ellipses at

50 volume percent reinforcement.

With the curves of Figure 40, it is possible to compare directly the
relative effectiveness of the rounds and the ellipses for providing a given
transverse stiffness. For example, suppose that transverse stiffnesses
ranging upward from that for the uni-directional ellipses is to be obtained
by the orthogonal rounds. To achieve these stiffnesses some of the longi-

tudinal (l-direction) round filaments must be oriented in the 2-direction;
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the stiffness in the l-direction is thus reduced, and the reduction is sub-

stantial, - as shown by the "'equivalent rounds'" curve on Figure 40,

Each point on the "equivalent rounds'' curve of Figure 40 has the
same transverse (2-direction) stiffness as the elliptical filaments at the
same value of the abscissa. Thus, for example, with 20% transverse
reinforcement the ellipses provide an E1 of 35,2 GN/mZ approximately, whereas
the equivalent rounds (i.e. the rounds giving the same EZ(: 23.5 GN/m?) as this
configuration of ellipses) would provide only the E1 given by the "'equiv"

curve at this abscissa (20%) or 24, 9 GN/m?2.

While comparisons like those of Figure 40 suggest that, for glass-reinforced
epoxy, ~if the application requires transverse stiffness of one-half or more of
the axial stiffness, -shaped filaments like 4 to 1 ellipses may provide substantial
structural improvement. If advanced filaments like boron are considered, how-

ever, a different result is obtained.

In Figure 41, the curves of Figure 40 are replotted for boron instead of
glass reinforcement. With the high ratio of longitudinal to transverse stiff-
ness provided by the boron, the factor 2 improvement associated with the
elliptical geometry for unidirectional reinforcement is nearly as readily
attained with a few transverse round filaments. Hence, the "equivalent

round' curve is only slightly below the curve for the ellipses.

A similar result is obtainable for changes in binder properties. Thus
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the use of a hypothetical filled binder (properties like those of the alumina-
filled epoxy of Reference 2 were used for calculation) can raise the overall
stiffness level (i.e. the longitudinal as well as the transverse stiffnesses)

of a glass-reinforced plastic as shown in Figure 42, Thus the binder im-
provement is more effective than the filamentary ellipses, for example,

for they enhance only the transverse properties. If, however, the reinforce-
ment were boron, the improvement arising from the stiffer binder would be
a much smaller percentage of the overall stiffnesses. With boron, then,
once again transverse stiffness properties could be attained nearly as

readily with a few transverse filaments as with a binder twice as stiff as

epoxy.

Reviewing the implications of Figures 40 to 42 one concludes that the
merit of the elliptical shape depends on the associated conditions. It is
perhaps most valuable when the ratio of Ef/Eb is not extreme - as extreme

as boron in epoxy, for example.

An interesting future possibility might be a diamond-shaped filament
(with slightly rounded cornersi which could combine most of the attractive

features of the equilateral triangles with those of the ellipse,

Three-Dimensional Reinforcement - Equations for the elastic constants

for composites having reinforcing filaments in three orthogonal directions

and filaments making equal angles (+ @) to each of three orthogonal directions
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are given in Tables 12 and 13 respectively.

The use of three-dimensional reinforcement raises new questions
about the relative desirability of various reinforcement configurations.
Most of these questions have not yet been answered, Hence, here we
shall only indicate some of the problem areas to which equations like
those of Tables 12 and 13 provide access.

(1) What is the proper balance for optimum reinforcement
in the various directions? Strength criteria (Ref. 11)
suggest the desirability of three-directional reinforce-
ment, but any sacrifice in filaments in one direction
to provide filaments for another direction produces a
compound loss of properties in the first direction., For
example, consider the following three glass filament-
reinforced epoxy composites:

(a) 60 volume percent filaments in the 1-direction
(b) 50 volume percent filaments in the l-direction,
10 volume percent filaments in the 2-direction
(c) 40 volume percent filaments in the 1-direction
10 volume percent filaments in the 2-direction

10 volume percent filaments in the 3-direction

Elastic constants for these configurations are
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E, - 48,8 GN; 2 E = 13.4 GN/_ 2 g = 13.4 GN/p2,
m m 3

1 2
(7,070,000 psi) (1,940,000 psi) (1,940,000 psi)
(2) GN GN GN
G,= 4.429N/p2 Gy, =5.00 OGN/ 2 G ,= 4042 ON/2
(640,000 psi) (726,000 psi) 7 (640,000 psi)
_ GN 2 _ GN 2 _ GN 2
E| = 42.2 7/ E, = 18.1 /p Ez = 1.2~ /m
(6,120,000 psi) (2,630,000 psi) (1,620,000 psi)
(b) .
GN GN GN
- 2 - 2 - 2
Gip= 3.71 /g Gyq = 4.08 77/ n® Gy = 3.6877/
(537,000 psi) (592,000 psi) (534,000 psi)
_ GN 6 2 GN, » GN, »
E, = 35.5 '/ E, = 16.6 /g, E, = 16.6 /g
(5,140,000 psi) (2,410,000 psi) (2,410,000 psi)
(e) GN GN 2 GN, 2
- 2 - -
Gy, = 3.26 7/, Gpy = 3.48 77/ Gy3= 3.26 7/
(472,000 psi) (504,000 psi) (472,000 psi)

The reductions in G12 from (a) to {(c), and in E3 from (a) to (b)
are associated with the losses in transverse properties (cf., the
two curve of Figure 35 associated with the reduction in filament
packing density in the 1 - direction. Evidently a balance must be
struck between multi-directional filaments and multi~directional

reinforcing by transverse filament effectiveness.
2) Are skew filaments more effective than orthogonal filaments?

If one restricts oneself (to begin with) to the simple combination of pairs
of skewed filaments indicated in Fig. 43, for which the equations of Table 13

apply, one finds, for example, that if all pairs make 30° angles with their
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respective axes, and the volume fractions are 40% in the 1 -direction,

and 10% in the other directions.

E, = 12.4 GN/ 2 E, = 10.2 GN/ ;2 E, = 7.25 OGN/ 2
(1,790,000 psi) (1,480,000 psi) (1,050,000 psi)
- 2 -
Gy, = 4.69 C"N/m2 Go3 = 4.80 GN/__ Gy = 8.49 GNy_2
(680,000 psi) (696,000 psi) (1,230,000 psi)

By comparison with (c¢) above, it is evident that the skewing has decreased
the E's and increased the G's. Here the stretching stiffnesses in the three
directions are more nearly alike; with just the orthogonal filaments the
shearing stiffnesses were closer together. The differences of this nature

lead immediately to questions like the following:

(3) How do the various stiffnesses change with angular orientation, and
what is the minimum number of reinforcement directions required

for isotropy?

In order to illustrate some of the possibilities, Figs. 44 - 48 were pre-
pared. In Figs. 44 - 47, the variations in stretching and shearing stiffnesses
with angular orientation of reinforcement are presented for a constant volume
fraction of total reinforcement of 0.6, In general as the reinforcements
are changed to enhance the stretching stiffness, the shearing stiffness is
decreased and vice versa, In Figs. 46 and 47, however, there is evidence
that the correspondence between the two types of stiffnesses is not a simple

one. Thus for @ % 45° in Fig. 46, the stretching stiffnesses in the 1 -, 2 -
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and 3 - directions are about equal. The corresponding shearing stiffnesses
plotted on Fig. 47, on the other hand, are substantially different at this
angle. Hence, obviously, equality of stretching stiffness in 3 orthogonal

directions does not constitute isotropy.

One criterion for isotropy is that

E

TA 9 (72)

G =

A plot of the ratio for the reinforcements of Figs. 44 and
45, and for two other volume fractions is made in Fig. 48. For all volume
fractions, the ratio is unity at£@= 30° or 60°. Accordingly, it appears
that six filamentary directions ( + 30° to three orthogonal axes) may be

sufficient to provide an essentially isotropic reinforcement pattern.

Concluding Remarks on Three-Dimensional Reinforcement

The waffle-like analysis for elastic properties developed in this section
is sufficiently versatile to encompass most geometrical effects of composite
reinforcement, While written only in approximate form, the fact that its
results correlate reasonably with other analyses when two-dimensional
problems are considered lends confidence to the belief that it should be
adequate for the three-dimensional domain. Guidelines for improving the
accuracy of approximation, as by the employment of more precisely deter-

mined transverse effectiveness factors follow straight forwardly from the
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same starting point used in the present derivations. Indeed there should
be no major impediment to the development of an essentially rigorous
general analysis analogous to that already completed. The desirability
of such a derivation can perhaps be better determined after the present
results have been capitalized upon to explore the three-dimensional rein-
forcement regime, determine its areas of prime interest, and relate

these to accompanying studies of strength characteristics.
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EXPERIME.NTAL EVALUATIONS OF TRANSVERSE EFFECTIVENESSES OF
FILAMENTS OF VARIOUS CROSS-SECTIONS

The use of filamentary cross-sections other than rounds to improve
properties transverse to the filaments was proposed in Reference 2 and
progress has been made by DeBell and Richardson since then in the deve-
lopment of techniques required to make shaped-filamentary composites
feasible. Quantitative evaluations of the merits of shaped filaments,
however, have still been inadequate to direct this development into most
fruitful areas. Accordingly, both experiment and analysis has been con-
ducted on the more attractive cross-sectional geometries proposed for
filaments. The results of the experimental phases of these investigations,
comprising photo-elastic studies and mechanical tests of ellipses and

hollow rounds, are reported herewith.

Evaluations of Elliptical Filaments

In contrast to the relatively small increases found for triangular filaments
in the preceding section, elliptical filaments have already demonstrated (Ref. 2)
factors of two improvements in transverse stiffness for a specific aspect ratio

ellipse in 50 volume percent binder (E a2 21). Accordingly, an extensive

f/E
experimental study of the transverse effectivenesses of ellipses compared to

rounds has been made. The findings are reported forthwith.

Tests of Transverse Stiffness - A series of models (Figure 49) of “large"

(typical diametral dimensions 5 mm) inclusions was made and tested in
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compression (Figure 50) with systematic variations in volume fractions
and inclusion shapes. Stiffnesses were measured in both transverse
directions using Tuckerman optical strain gages, with the gage length
adjusted tc span even multiples of inclusions and associated binder. The

results are presented in Table 16and Figures 51-54.

Not surprising are the results shown in Figure 51. The solid rounds
are in fair agreement with the predictions of Hashin and Rosen (Reference 6)
and the ellipses provide substantial enhancement of transverse stiffness in

the direction of their major axes.

More surprising are the results shown in Figure 52, Here the trans-
verse stiffnesses in the direction of the ellipse minor axes are also shown
greater than the rounds, Apparently, the round is one of the least effective

shapes for providing transverse stiffness.

For hollow rounds (Figures 53-54) and for holes, Hashin-Rosen upper
bounds are in better agreement with the test data than the previously used
mean value (Reference 1). Here again ellipses are befter in the direction
of their major axes, but for holes the stiffnesses in the direction of the

minor axes are much less than for rounds.

For completeness the measured values of Poisson's ratio for the speci-

mens are presented in Figure 55,
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Discussion of Test Results - The most significant results of the foregoing

tests appear to be the following:

1.

4,

For solid round inclusions the Hashin-Rosen bounds predict the
transverse stiffnesses with reasonable accuracy,
For hollow rounds the Hashin-Rosen upper bounds are a better measure
of the transversec stiffnesses than the average of the upper and lower
bounds. Thus evaluations (Ref. ] ) of hollow filaments which used the
average of the bounds and concluded that the hollow was disappointing
because of its poor transverse properties, unduly devalue the hollow
filament.
Little relationship exists between the transverse effectiveness of binder
between holes and binder between solid inclusions. This fact, amply
demonstrated by the very low effectiveness in the direction of the minor
axis of elliptical holes and the high effectiveness in the direction of the
minor axis of elliptical solids, suggests that the 6 values of the pre-

-
ceding section should not be evaluated on the basis of holes in the binder.
Ellipses are perhaps better than might have been anticipated for the
enhancement of iransverse properties, because they increase the stiff-
ness in the direction of the minor axis (albeit only slightly) as well as

in the direction of the major axis.
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Photoelastic Studies

In order to study further the mechanics of filament-binder combina-
tions an additional series of models similar to those tested as described
in the preceding section was made and subjected to photoelastic analysis
at the Photolastic Corporation. Specimens comprised round and elliptical
holes and inclusions at several volume fractions. The resin used was
Photolastic type PS-2. Inclusions were aluminum, and they were bonded
in place with Photolastic type PC-IC cement. Typical fringe patterns are
illustrated in Figures 56-58, and typical results of the reduction of data

to yield isoclinics and isostatics are presented in Figures 59 and 60.

Results of Photoelastic Studies - The chief result of the photoelastic analysis

is that with inclusions, and especially with high volume fractions of filaments,
a nearly uniform stress state is produced for transverse loads, as illustrated
in the lower, right sides of Figures 59 and 60. This uniform stress state is
consistent with the high transverse effectivenesses found for solid inclusions
in the previous section (effectivenesses near the Hashin-Rosen upper bounds).
Correspondingly the highly non-uniform state of stress found for holes (the
upper halves of Figures 59 and 60) and the associated high stress-concentra-
tion factors (Table 16) bear out the finding that there is little relation be-
tween the effectiveness of binder material among holes and among filaments.
The ellipses loaded along their major axis produce an even more uniform

stress state than the round inclusions.
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CONCLUDING REMARKS

Several studies relating to the mechanics of filament-reinforced compo-
sites have been reported herein. A prime motivation behind these studies
derives from continuing investigations of efficiency of composite applications,
because as noted in the section on shell efficiency such investigations emphasize
the importance of adequate analysis of the role played by both binder and rein-
forcement in the attainment of the potentials of advanced composites. Thus the
ultimate strength in both tension and compression, as well as the buckling
resistance in compression have been shown in these studies to be profoundly

influenced by both filamentary and binder material properties,

To further the understanding of the mechanics of reinforcement, an
analysieé of the visco-elastic response of composites has been accomplished
and the influence of the viscous effects upon the individual properties has been
identified. The transverse effectiveness of filamentary reinforcement has
been studied experimentally, both mechanically and photoelastically, and
the merits of triangular and elliptically-shaped filaments evaluated. An
analytical procedure has been developed for the calculation of the elastic

constants for three-dimensional reinforcement,.
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chl

Vehicle

Redstone

Scout

Thor

Atlas

Minuteman

Titan I

Titan II

Saturn V

Nova

#Lower value is that for sustainer engine-in this case perhaps more representative of the design

condition,

TABLE 1.

Thrust, kN

(lbs.)

347
(78, 000)
383
(86, 000)
756
(170, 000)
1730-375%

(389, 000-80, 000)

756
(170, 000)
1334
(300, 000)
1913
(430, 000)
33,360
(7, 400, 000)
11, 200
(25, 000, 000)

Radius, m.

(in.)

0.889
(35)
0.4955
(39)
1,219
(48)
1, 524
(60)
0.9015
(35. 5)
1,524
(30)
1,524
(30)
5,08
(200)
12,19
(480)

COMPRESSIVE LOADINGS FOR LAUNCH VEHICLES

Thrust

Circumference x Radius
KN/m? {psi)

70
(10)
250
(36)
80
(12)

120-24

(17-3.5)
150
(21. 5)
90
(13)
130
(19)
200
(30)
120
(17)
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TABLE 2,

Material

Steel

Titanium

Aluminum

Magnesium

-Lithium

Beryllium

MECHANICAL PROPERTIES ASSIGNED TO IDEALIZED METALS FOR COMPARISON

Density
Mg/m3
{pci)

7.89
(0. 285)

4.82
(0.174)

2,80
(0. 100)

1.34
(0. 0485)

1.83
(0. 066)

WITH COMPOSITES

Young's Modulus
GN/m?
(ksi)

207
(30, 000)

103
(15, 000)

73. 8
(10, 700)

42,75
(6200)

293
(42, 500)

Yield Stress
GN/m?
(ksi)

2,07
(300)

1,38
(200)

0.483
(70)

0.124
(18)

4,00
(58)

Poisson's
Ratio

0.25

0.145

0.315

0.43

0.09
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TABLE 3. MECHANICAL PROPERTIES USED FOR FILAMENTARY MATERIALS SURVEYED FOR
COMPOSITES

Hollow E-Glass
Solid E-Glass
Hi-Modulus Glass
Asbestos

Steel

Beryllium

Boron

Alumina

Young's Modulus
GN/m?2
(ksi)

72.45
(10, 500)
72.45
(10, 500)
110
(16, 000)
183
(26, 500)
207
(30, 000)
276
(40, 000)
414
(60, 000)
518
(75, 000)

Densit
Mg/m
(pci)

2.56
(0.0914)
2.56
(0.0914)
2.56
(0. 0914)
2,44
(0,087)
7.9
(0.283)
1.85
(0. 066)
2.32
(0. 083)
4,0
(0.143)

Poisson's Ratio

0,20

0,20

0,20

0,20

0.25

0,09

0.20

0,20
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Table 5. Comparison of Elastic Moduli Predicted by the Methods of

Pickett (Ref, 10) with those of Hashin/Rosen™ (Ref. 6).

Case A:
6 .
F_.f = 10,008 x 10 psi
E, = 4.958 x 105{51;51
ve = 0.63
Property Ref. 10 Value
(case b9 - p. 16)
6
E] 6.4908 x 10
0.2428
21
t 6
G12 0.6926 x 10
6
K23 1.5689 x 10
G 0.6790 x 10°
23 :
Case B:
6 _ .
Ef = 10.008 x 10~ psi
E, = 4.958 x 10% psi
= 0.8
)f:
Property Ref. 10 Value
{(case c2 - p. 17)
6
E,; 8.1037 x 10
0.2227
21
G2 B

* Random array results with G23 value being the average of upper and lower

bounds. Other bounds coincident.

t From run 6, p. 46.

146

Vv -
¢ = 0.20
v, =0.34

Ref. 6 Value

6.4913 x 106

0.2439

0.6886 x 10°

1.5598 x 106

0.6870 x 106

v -0
£ 0.20

-/b=o.34

Ref. 6 Value

8.1074 x 10°

0.2228

1.1958 x 10°




0

12

23

Gz3

Vg = 0.6

2.5628 x 100

1.2644 x lO6

(casec4 - p. 17)

7.1596 x 106

0.2350

1.8645 x 106

0.8496 x lO6

(case cé6 - p. 17)
6.2101 x 106
0.2482
1.4613 x 106

0.6106 x 10°

(case ¢c8 - p. 17)

5.2535 x 106

0.2615

b7

2.4873 x

1.1828 x

7.1568 x
0.2350

0.8443 x
1.8507 x

0.8419 x

6.2060 x
0.2478

0.6354 x
1.4591 x

0.6334 x

5.2550 x

0.2612

0.4971 x




Ve

E¢ = 0.2600 x 10

1.1936 x 106

0.4631 x 10°

variable

0.2600 x 106

0.63

6

Property

Eq

v

- 21

G

Ko3

Gy3

Ref, 10 Value
(casedl - p. 18)

0.2600 x 106

0.3000

0.1000 x 106

6
0.2500 x 10
0.1000 x 10°

6

E¢ = 0.5200 x 10

Ey

v

21

Gip
Kzs3

Gy3

(case d2 - p. 18)
6
0.4421 x 10

0.3000

0.3943 x 106

0.1593 x 106

148

1.1938 x 106

0.4924 x 106

"/f_o.3o
'/b=o,3o

Ref. 6 Value

0.2600 x 106

0.3000

0.1000 x 106

6
0.2500 x 10

0.1000 x 106

0.4238 x lO6

0.3000

0.1532 x 10°

0.3746 x 106

0.1521 x 106




E

f

= 1.5600 x 10°

E)

<

21

G

Kz3

23

(case d3 - p. 18)

1.1704

0.3000

0.6749

0.2907
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1.0790

0.3000

0.2636

0.5892

0.2556




Table 6. - Equations for elastic constants for composites with uni-
directional reinforcing filaments in the 1-direction.

Eé// ud £ [/ )
// +7-29) / % vt (/N;}(I 2.:/)[

vp &}
A, = (/hlé)’/-?d‘)[ Vil f) [/w,)(/ ZJf)(ﬂ f)

Ay = A,

- Bl 1,
A le o)

Ay = A,

Ag = Ay

Ar= Gy (1ly) + G (P%)
= Ga(1-ply)* G(p"y)

Ag = A7

(1)
f) [/fff/{/ ZV;)('Vf)
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Table 7. - Equation for elastic constants for composites with orthogonal

A, =

Az""

Ay =

A

Ay =
Ag=

Ag =

reinforcing filaments in the 1- and 2 -directions.

Es (1) Ez (-v¢) Ez,(1-9¢,)
//Nw-«?‘s)[ % ‘/5"'/5) //*V/Y/’Zv/)[ )t (/*V/ /‘2%)0’

Vg Q;
Tl 1) g P nwz‘x/-‘éw-:a)
AZ

(-v) (1-v)
e G o o QU o i

A

=A4

Go(1pi ) * G () * e (%)
Go(1-ply Pl ) Gy )+ G (Pg) =

A7 /MW
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Table 8, - Equations for elastic constants for composites with reinforcing
filaments in the 1 - 2 plane and making angles of + O degrees to

the l-direction.
= Eb(/ b) . . 2sin*Bcos’®
A W2 / - /c'os’ef/.j,am'fe*(véﬂ.f// 2"6}/3 B /}

Exfl-V, irtBcos?
(w—{“‘)@/ frvomsson(opievip) 2552

e S e
(132««)/ fafeworeoseffinif e} -f-euio fwem*e]

& Ve&r
AJ - (Iﬂle[-zv‘)(l o '/f) * (h *.%,_ v f)(ﬁo‘?)

E4(7- 3 2
¢ ;%‘%g; // Yefs [ n*Q43, cos‘ei( 5/3,+[1-29‘}F )2 If:“G]}

£ v ) ¥ 23:1n*BcostO
"lrilfir4) / [ WO 1f0.c08"0 #(oppt f1-2u]pi) 2250 ]}

A= Ay
Ea(1-%) £(7-%)
N G GOl = ol
A =Gy ﬁ - 14-[; 7-%) +[/-3.v5)ﬂ .} l( 2:7123‘;”:9 *3 . co;lZ@] }
*Gef i 1= f {3}, ) 25828) 1 plcas =29]!
Ag‘ Géf Y th’efp. cos'B'lI + fo ,/,E;,‘sm‘em, cos‘@]f
Ag = Gpf/- :;c/;i cos‘efp,am‘ejj +6,[ f/k cos’8 +3,'6in*6 }2
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Table 9. - Equations for elastic constants for composites with reinforcing fila-

ments in the 1 - 2" plane and making angles of +30 degrees and 90 degrees
with the 4 l-direction.

A, '//f.if[/uﬁg/; w3 ot //-mzp.),:@jl
Ly / J3l0(op-soip) /}
w——)/ﬂ i iein

Vi &)

% (’*%[/M)(I Lot W{ﬁr‘)

A= A
A = A,
Eu(1-v)

o e G T
A, = /-V /%—v5)+[/—345}4_.}/%;} ip :/j
+6{/ // ) #(-3lp, } 1-2v } 2/"}

A= Gyfi-wfHa. */?..)]} * Gf/ 4z */""/]}

A9=Aa
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Table 10. - Equations for elastic constants for uni-directional triangular
glass filaments ir the 1-direction in epoxy binder,

E( "f) L5 (I-%)

’ (/-N/E/ 29; (I-l-\)é i[-Zv})[‘/b)
vek, £
%77 'w‘?‘/-iz's«')(’ ) g Po)

Ay = A,

N e e )]}
" fff’,'_‘;‘,f)/ of Perof s fr2njef S )//

A (/w;;?—z‘y)/“zf‘z pof-sipbr-srips)f J}
* gt el st o )}

As=Ay

A= Gr (') * Go(1-1a%)

M L
Ag = C{[ﬁ‘ l)/,) *G}/Vé//! -4} +/I-3v5}ﬁ./(:§;;)+éiﬂ,%
Ag = Ay
with 3, for EZ’& =0.05, f, for 5;75;21.
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Table 1l. - Equations for elastic constants for stretching for orthogonal,
elliptical filaments aligned in the 1- and 2 - directions and having
their minor axes in the 3-direction,

- &l g, E¢(1-v¢)
(/fVJM-ZV})( Le f} W[lz +/o.zg)

%E)

2 (/*"ézl"z"é ﬂ’fﬁ’f/ //*:I,t/(/ Zvﬁ(FOf /% )

: Y & 2.7, 3,0
A _//*vbf(/i.;‘g) / ‘Lﬁ/ %)~ Lﬁ‘ ‘?{}

1);@‘ ﬁo ﬁ. P +
" el / % M{‘%)}

E(1-%)
$ %) Tl (%

_ E(-v)
//*i,(/.z‘“)( P o f

Ay = A

£y () Er(l-v%)
Af(’*;l’_%i)( ) (*;ﬁ-zv)(ﬁy* )
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Table ]2, -

reinforcing filaments in the 1-, 2-, and 3- directions.

-{/f;?::fj/ YY) * (,,,’;g[,,:,,f)f (3,
(/:;_4%[:'_?;&_ [ Po f) (l_f%%@"%}
Ay = /mw-z.,,)( R L L) * (,,g,}ifzo,)(’ﬂ %)
i) + )
A=A,
Ag= [I+f£fo-2!)6)( A=)t G i:q{:/:v))['a X2

Efa[/ v,) (%) + (H E(1-v,) x

" (revgNreig) v I"‘Z‘sg)
As=Ap
Ep(1-v4) Eg (%)
A7 o /—2«1)( Pty ) * lrvvg Y- 2\;:)( %)
Ef,(’ v6) , Eg (1=
(/*%X'-"-es’ i) * (/""’f )("""f)(f

A= Gyll-alg -l Alg) *oploiy) + Go (riw) * 65 (P )

Equations for elastic constants for composites with orthogonal

o= Gu(1- i alg) + G () + G (Pl ) # G (i)

A= Gl ping) + G (B ) Gy (A1) + 6, ()

156



Table 13. - Equations for elastic constants for composites with reinforcing
filaments in the 1 -2, 2-3, and 1 -3 planes and at three scts of
equal angles (-_|~_61, + eZ' and +°3) to the 1-, 2-, and 3- directions.

[ /— Sy CO‘
A, = (/,f,// M)/ ' ‘4‘/ e i upsf- ol o a)] s
/:wo’e +2,605"8, "'(‘tﬂ //-296}P I m/::“ 2] }
Ef (/ "f)

/’W’ . /m’e p,9in'G fﬁfﬂ. +fi-29)p. z‘;"z“"a)

"éﬁ” / » / i am,v).ér,.,,y_} fr29) I’—ﬂ—j A }
~r—/ Hespeif 2=
(,:,—',’7,'3;;(& %)t e, f;u,)(ﬁ"’ )

] (/%55_/ P ‘(m"o-rm" frife) p.zg‘g,,r_w_mﬁ]j
o'vmm@' %) mﬁ’y%@'(ﬂ

FOOY TR
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Table l3.- Continued.

_ Ey(t-v) _ 1\[25in%6,cas%,
A ¢ = g V2 %) /—l/;'r[s:»’e,fﬂ.cw’q-fé;ﬂ.i-[l-zau}(;_, v

- l@/’m&eg fﬂ.%%*&ﬂoffl-z*gﬂ%%-ﬂ.%}
E 51h20,cos
fi‘)%e"/y’/ i (”’ /’“’"’?PX? & ]X
(I_,, y %, cos9 E"( *)
(T%/{,[ qf/; sih 8, \’4(‘ * "Zviﬂtxé ,.a,,,‘ )]] (n.;;{/ 2.\5)( f)
Ay (/—_fw% ) %.( n“%fm\g){ % j—L}J' Zuje,( ] /’.'4'}

(’"’/ Y2 -V)o’ % % m{‘[ ,(" ”3"“3"("’;'/11}41-2?}(:. XZsm‘e 251h*0,c05%6,

V3 Efa )
{/+ VY, Xl—z%) %

E =, @ & Slh
Ag= (m:({/-zfi) Y zf"’ 6,%8,¢0"8, *("ﬂ-*[’ 'z"‘}(’-oX / iws ]
- m've_,+/;_ ;:&”9_,*@,33[1-295}{;_, ‘e""" 996”"9)]}

Ef(’ -9¢) {g -vg/ v 40 ,( I 25in%6,c05%6
(’wf,X/Z )( f) (IN/,II 2‘95) m“/" o "MI(I zﬁ’ % 1-%,

Ef (I -v,) %0, v st : szto,m&a
{lw;X/ ”,)/ /—059 $in %"‘ P0+[,2’{[/’. /-v¢ jj
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Table 13. - Concluded.

E4(1-v) ) N o ) a
A7 [h;{; 24}]/2,(/2-!;‘) }‘[ /' ‘}f).ﬂh 6 cos 91 .;.é/ ,2 :} f cos 2?/
2,{/ i: [ (Po“”'e*/’ "0'95)»‘0}(() é‘m'@fia m‘gj}
Ezf-v ) ‘
il zi)/ P e AR

W//_cos'af/: m'o [ > /[m'eyamteJ}

E(- ) f 1-2v
Ay (/.:;l' 1‘972( i KA oy

) / ;i:}f )""'g ol 1o .», fpcos ]‘ [Qﬁ%ﬁ,@?“'@*ﬂ.’“‘ojf
+—£L G irsm*G o.s’\9] CAG) -3y . BRLAR
Z[Ingl) ’f/ﬂ; i S +(Iv* -2%) % ", I—x'}ﬂ)‘"’gwﬂ'é ;- P-'“"IZQ
E ) N .
+ 27__'::6 ; fg /écw‘gvﬁ;vm‘%]}
Ay =(f3§';-:‘i)]zl?::f/'%ﬁ’-"‘“”"/-‘-"""“%)"a@-"""‘% " “‘“‘9-/
-l;clﬁf- ;‘:‘; }()’)w‘bm'gv(i[—ﬁf: ’ co&a]]

‘W/ f[)' mﬁfﬁm‘o]] 2(,"’6) KS/!; ‘"6 "%, rcos* _‘]}
ooy ] (e am‘%'é'w%f%;)r;wg}
159 -




Table 14, - Generalized equations for elastic constants, like those of

Table bbut with a variety of transverse effectiveness factors.

() Ex(1-%)
& Wh )*/W(P-/f)

9
A, =[IN#Z77/ /’&r )+ (/H;[/-Zv/){ﬂzr )

A, = A,

55// "5) Ef/, )
i (’*"b /-296){ 1oy J (1)1~ 29,)(//"0 v)

A5 = W——{.m)'-fg y)+ [,,,,,},fz‘,,)(ﬂ.xf)
Ag = Ay

Ay = Gy(1-ply) + Ge(P¥%)

4g = 64 (-3 %) * G4

Ag = Az

(o = oy #0 # Loy 2]
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Table 15. - Interrelationships among elastic constants for use in
evaluations of the various p 's of Table 14.

A; = A

A = Ey(1-V395)
¢ (7-v23=2 "lz"le/ *9p)

A= A, - 24,

Ag = Ag
A; =Gy

Ay= Ay
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TABLE 6. -VALUES OF STRESS CONCENTRATION FACTOR FOR PHOTO-
ELASTIC SPECIMENS

STRESS CONCENTRATION FACTOR
v SPECIMEN
f @po*1 450 90°
0.30 Round Holes -14.5 19 11. 3
Round Inclusions 0.5 1.4 0.6
Round Holes - 6.5 6.4 5.4
Round Inclusions 0.5 1.6 0.5
.50
Elliptical Holes -1.0 +2.7%2 +1.3
Elliptical Inclusions 0.4 0.5 0.1
Round Holes ~2.7 2.6 3.7
.70
Round Inclusions -- -~- -~-

*1 On axis of load and holes

st
3k

Max. value
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Figure 1, Variation of Elastic Structural Efficiency of Biaxial Laminates
of E-Glass Fibers in an Epoxy Matrix
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Figure 2. Moduli and Densities of Matrix and Fiber Materials Studied
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Figure 14. Cross-sections of Uniaxial Fiber Composites Transverse to the
Fiber Axes
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Figure 17. Transverse Young's Modulus, EZ*, of Boron Reinforced
Epoxy-Comparison of Theory and Experiment
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Figure 18, Comparison of Results for Elastic Constants Predicted by
Filshtinskii (Ref. 20) with those Predicted by Hashin/Rosen

(Ref. 6)
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Figure 26, Instability of Single Filaments Embedded in Silicone Rubber and

Compressed in the Fiber Direction
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Figure 31. Repeating Element of Uni-Directionally Reinforced Composite
Corresponding to that for the Integrally Stiffened Plate of Ref. 44
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Figure 32, Three-Dimensional Angle Notation Used in Analysis,
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Figure 33, Values of Transverse Effectiveness Coefficients (8 ) Based on
Upper Bounds of Reference 6
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Figure 34, Comparison of Stretching Stiffness in the l-direction E; and the
Related Poisson's Ratio v, Calculated by the ""Rule of Mixtures"
or Laminate Analyses (Solid Curves) and by the Present Analysis
(Dashed Curves) for Uni-Directional Reinforcement
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Figure 35, Comparison of Stretching Stiffness in the 1-Direction E; Calculated
by Laminate Analysis (x-Points) and the Present Analysis (the
Curves) for Orthogonal Filaments in the 1- and 2-Directions
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Figure 36. Comparisono f Stretching Stiffness in the 1-Direction E; Calculated
by Laminate Analysis (x-Points) and the Present Analysis (the
Curve) for Bi-Directional Reinforcement in the 1-2 Plane with
Filaments at Angles +86 to the 1-Direction
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Figure 37, Comparison of Stretching Stiffness in the 1-Direction E; Calculated
by Laminate Analysis (x~Points) and the Present Analysis (the
Curve) for Three-Directional Reinforcement in the 1-2 Plane with
Filaments at Angles of +30 Degrees and 90 Degrees in the 1-
Direction
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Figure 39. Ratio of Transverse Stiffnesses of Epoxy Composites Having
Uni-Directional Filamentary Glass Reinforcements of Triangular
and Circular Cross-Section
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Figure 40. Evaluation of Enhancement of Transverse Stiffness Provided by
4 to 1 Aspect Ratio Elliptical Cross-Section Glass Filaments in
Epoxy Binder
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Figure 41, Evaluation of Enhancement of Transverse Stiffness Provided by
4 to 1 Aspect Ratio Elliptical Cross-Sectional Filaments of Boron

in Epoxy
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Evaluation of Enhancement of Transverse Stiffness Provided to
Glass-Filament Reinforced Composites by a Filled Binder Having
a Stiffness Increase of 160%
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Figure 43, Schematic Representation of Orientations of Orthogonal, Skew
Pairs of Filamentary Reinforcements Considered in Figures 44-48
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Figure 44. Stretching Stiffnesses of Composites with Three Orthogonal,

Skew Pairs of Filamentary Reinforcements with Equal Volume
-Fractions in Each Direction
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Figure 45. Shearing Stiffnesses of Composites with Three Orthogonal Skew
Pairs of Filamentary Reinforcements with Equal Volume Fractions
in Each Direction
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Figure 46. Stretching Stiffnesses of Composites with Three Orthogonal,
Skew Pairs of Filamentary Reinforcements, with Different
Volume Fractions in the Three Directions

27



GN
Et =72.45 me
vi=vup=0.2

10

®
z @

3

Vfl =0.3,

Et_
Vf2= 0.2. E—b- 2'
Vtz=0.1,

| J
0o 45 90

8, DEG.

Figure 47, Shearing Stiffnesses of Composites with Three Orthogonal, Skew
Pairs of Filamentary Reinforcements, with Different Volume
Fractions in the Three Directions
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Figure 49, Epoxy Test Specimens with Aluminum Inclusions of Various Configurations Used to Measure

Transverse Stiffnesses
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Figure 50. Typical Test Set-up for Measurement of Elastic Properties of Enlarged Models of Uni-
Directionally Reinforced Composites
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Figure 51, Transverse Stiffnesses of Solid, Round and Elliptical Aluminum
Inclusions in Epoxy, and Comparisons with Predictions, (Ellipses
Loaded in the Direction of the Major Axis.)
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Figure 52, Transverse Stiffnesses of Elliptical Aluminum Inclusions in

Epoxy Loaded in the Direction of the Ellipse Minor Axis
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Figure 53. Transverse Stiffnesses of Round Aluminum Inclusions of Two

Hollowness Ratios (o), and Comparison with Predictions
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Figure 54. Transverse Stiffness of Epoxy with Holes of Various Shapes and
Volume Fractions, and Comparison with Predictions
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Figure 55, Poisson's Ratios for Aluminum Inclusions in Epoxy for Transverse
Loadings (Inclusion Shape Indicated by Plotted Symbols)
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Figure 56. Photoelastic Patterns for Regular Arrays of Round Holes Loaded

in Vertical Direction of Page
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Figure 57, Photoelastic Patterns for Regular Arrays of Round, Solid
Inclusions Loaded in Vertical Direction of Page
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Figure 58, Photoelastic Patterns for Elliptical Holes and Solid Inclusions

(50% Volume Fraction) with IL.oad Applied Along Major Axis
Direction
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INCLUSIONS

Figure 59. Isoclinics and Isostatics Measured for Round Holes and Inclusions

at Ve = 0.5. (Load in Vertical Direction of Page)
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INCLUSIONS

Figure 60. Isoclinics and Isostatics Measured for Elliptical Holes and
Inclusions at v

NASA-Langley, 1966

CR-492

f

= 0.5.

(Load in Direction of Ellipse Major Axis)
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